Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tara J. Moriarty is active.

Publication


Featured researches published by Tara J. Moriarty.


Nature Immunology | 2010

An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and iNKT cells.

Woo-Yong Lee; Tara J. Moriarty; Connie Hoi Yee Wong; Hong Zhou; Robert M. Strieter; Nico van Rooijen; George Chaconas; Paul Kubes

Here we investigate the dynamics of the hepatic intravascular immune response to a pathogen relevant to invariant natural killer T cells (iNKT cells). Immobilized Kupffer cells with highly ramified extended processes into multiple sinusoids could effectively capture blood-borne, disseminating Borrelia burgdorferi, creating a highly efficient surveillance and filtering system. After ingesting B. burgdorferi, Kupffer cells induced chemokine receptor CXCR3–dependent clustering of iNKT cells. Kupffer cells and iNKT cells formed stable contacts via the antigen-presenting molecule CD1d, which led to iNKT cell activation. An absence of iNKT cells caused B. burgdorferi to leave the blood and enter the joints more effectively. B. burgdorferi that escaped Kupffer cells entered the liver parenchyma and survived despite Ito cell responses. Kupffer cell–iNKT cell interactions induced a key intravascular immune response that diminished the dissemination of B. burgdorferi.


PLOS Pathogens | 2008

Real-Time High Resolution 3D Imaging of the Lyme Disease Spirochete Adhering to and Escaping from the Vasculature of a Living Host

Tara J. Moriarty; M. Ursula Norman; Pina Colarusso; Troy Bankhead; Paul Kubes; George Chaconas

Pathogenic spirochetes are bacteria that cause a number of emerging and re-emerging diseases worldwide, including syphilis, leptospirosis, relapsing fever, and Lyme borreliosis. They navigate efficiently through dense extracellular matrix and cross the blood–brain barrier by unknown mechanisms. Due to their slender morphology, spirochetes are difficult to visualize by standard light microscopy, impeding studies of their behavior in situ. We engineered a fluorescent infectious strain of Borrelia burgdorferi, the Lyme disease pathogen, which expressed green fluorescent protein (GFP). Real-time 3D and 4D quantitative analysis of fluorescent spirochete dissemination from the microvasculature of living mice at high resolution revealed that dissemination was a multi-stage process that included transient tethering-type associations, short-term dragging interactions, and stationary adhesion. Stationary adhesions and extravasating spirochetes were most commonly observed at endothelial junctions, and translational motility of spirochetes appeared to play an integral role in transendothelial migration. To our knowledge, this is the first report of high resolution 3D and 4D visualization of dissemination of a bacterial pathogen in a living mammalian host, and provides the first direct insight into spirochete dissemination in vivo.


Molecular and Cellular Biology | 2004

Functional Organization of Repeat Addition Processivity and DNA Synthesis Determinants in the Human Telomerase Multimer

Tara J. Moriarty; Delphine T. Marie-Egyptienne; Chantal Autexier

ABSTRACT Human telomerase is a multimer containing two human telomerase RNAs (hTRs) and most likely two human telomerase reverse transcriptases (hTERTs). Telomerase synthesizes multiple telomeric repeats using a unique repeat addition form of processivity. We investigated hTR and hTERT sequences that were essential for DNA synthesis and processivity using a direct primer extension telomerase assay. We found that hTERT consists of two physically separable functional domains, a polymerase domain containing RNA interaction domain 2 (RID2), reverse transcriptase (RT), and C-terminal sequences, and a major accessory domain, RNA interaction domain 1 (RID1). RID2 mutants defective in high-affinity hTR interactions and an RT catalytic mutant exhibited comparable DNA synthesis defects. The RID2-interacting hTR P6.1 helix was also essential for DNA synthesis. RID1 interacted with the hTR pseudoknot-template domain and hTERTs RT motifs and putative thumb and was essential for processivity, but not DNA synthesis. The hTR pseudoknot was essential for processivity, but not DNA synthesis, and processivity was reduced or abolished in dimerization-defective pseudoknot mutants. trans-acting hTERTs and hTRs complemented the processivity defects of RID1 and pseudoknot mutants, respectively. These data provide novel insight into the catalytic organization of the human telomerase complex and suggest that repeat addition processivity is one of the major catalytic properties conferred by telomerase multimerization.


Molecular and Cellular Biology | 2002

Functional Multimerization of Human Telomerase Requires an RNA Interaction Domain in the N Terminus of the Catalytic Subunit

Tara J. Moriarty; Sylvain Huard; Sophie Dupuis; Chantal Autexier

ABSTRACT Functional human telomerase complexes are minimally composed of the human telomerase RNA (hTR) and a catalytic subunit (human telomerase reverse transcriptase [hTERT]) containing reverse transcriptase (RT)-like motifs. The N terminus of TERT proteins is unique to the telomerase family and has been implicated in catalysis, telomerase RNA binding, and telomerase multimerization, and conserved motifs have been identified by alignment of TERT sequences from multiple organisms. We studied hTERT proteins containing N-terminal deletions or substitutions to identify and characterize hTERT domains mediating telomerase catalytic activity, hTR binding, and hTERT multimerization. Using multiple sequence alignment, we identified two vertebrate-conserved TERT N-terminal regions containing vertebrate-specific residues that were required for human telomerase activity. We identified two RNA interaction domains, RID1 and RID2, the latter containing a vertebrate-specific RNA binding motif. Mutations in RID2 reduced the association of hTR with hTERT by 50 to 70%. Inactive mutants defective in RID2-mediated hTR binding failed to complement an inactive hTERT mutant containing an RT motif substitution to reconstitute activity. Our results suggest that functional hTERT complementation requires intact RID2 and RT domains on the same hTERT molecule and is dependent on hTR and the N terminus.


PLOS Pathogens | 2008

Molecular Mechanisms Involved in Vascular Interactions of the Lyme Disease Pathogen in a Living Host

M. Ursula Norman; Tara J. Moriarty; Ashley R. Dresser; Brandie Millen; Paul Kubes; George Chaconas

Hematogenous dissemination is important for infection by many bacterial pathogens, but is poorly understood because of the inability to directly observe this process in living hosts at the single cell level. All disseminating pathogens must tether to the host endothelium despite significant shear forces caused by blood flow. However, the molecules that mediate tethering interactions have not been identified for any bacterial pathogen except E. coli, which tethers to host cells via a specialized pillus structure that is not found in many pathogens. Furthermore, the mechanisms underlying tethering have never been examined in living hosts. We recently engineered a fluorescent strain of Borrelia burgdorferi, the Lyme disease pathogen, and visualized its dissemination from the microvasculature of living mice using intravital microscopy. We found that dissemination was a multistage process that included tethering, dragging, stationary adhesion and extravasation. In the study described here, we used quantitative real-time intravital microscopy to investigate the mechanistic features of the vascular interaction stage of B. burgdorferi dissemination. We found that tethering and dragging interactions were mechanistically distinct from stationary adhesion, and constituted the rate-limiting initiation step of microvascular interactions. Surprisingly, initiation was mediated by host Fn and GAGs, and the Fn- and GAG-interacting B. burgdorferi protein BBK32. Initiation was also strongly inhibited by the low molecular weight clinical heparin dalteparin. These findings indicate that the initiation of spirochete microvascular interactions is dependent on host ligands known to interact in vitro with numerous other bacterial pathogens. This conclusion raises the intriguing possibility that fibronectin and GAG interactions might be a general feature of hematogenous dissemination by other pathogens.


Molecular Microbiology | 2012

Vascular binding of a pathogen under shear force through mechanistically distinct sequential interactions with host macromolecules

Tara J. Moriarty; Meiqing Shi; Yi-Pin Lin; Rhodaba Ebady; Hong Zhou; Tanya Odisho; Pierre-Olivier Hardy; Aydan Salman-Dilgimen; Jing Wu; Eric H. Weening; Jon T. Skare; Paul Kubes; John M. Leong; George Chaconas

Systemic dissemination of microbial pathogens permits microbes to spread from the initial site of infection to secondary target tissues and is responsible for most mortality due to bacterial infections. Dissemination is a critical stage of disease progression by the Lyme spirochaete, Borrelia burgdorferi. However, many mechanistic features of the process are not yet understood. A key step is adhesion of circulating microbes to vascular surfaces in the face of the shear forces present in flowing blood. Using real‐time microscopic imaging of the Lyme spirochaete in living mice we previously identified the first bacterial protein (B. burgdorferi BBK32) shown to mediate vascular adhesion in vivo. Vascular adhesion is also dependent on host fibronectin (Fn) and glycosaminoglycans (GAGs). In the present study, we investigated the mechanisms of BBK32‐dependent vascular adhesion in vivo. We determined that BBK32–Fn interactions (tethering) function as a molecular braking mechanism that permits the formation of more stable BBK32–GAG interactions (dragging) between circulating bacteria and vascular surfaces. Since BBK32‐like proteins are expressed in a variety of pathogens we believe that the vascular adhesion mechanisms we have deciphered here may be critical for understanding the dissemination mechanisms of other bacterial pathogens.


Journal of Biological Chemistry | 2009

Characterization and in Vitro Reaction Properties of 19 Unique Hairpin Telomeres from the Linear Plasmids of the Lyme Disease Spirochete

Yvonne Tourand; Jan Deneke; Tara J. Moriarty; George Chaconas

The genome of the Lyme disease pathogen Borrelia burgdorferi contains about a dozen linear DNA molecules that carry covalently closed hairpin telomeres as a specialized mechanism for dealing with the end-replication problem. The hairpin telomeres are generated from replicative intermediates through a two-step transesterification promoted by the telomere resolvase ResT. Although the genome of B. burgdorferi has been sequenced, the sequence of most telomeres has remained unknown because of difficulties in recovering and completely sequencing the covalently closed hairpin ends. In this study we report a new approach for the direct sequencing Borrelia telomeres and report the sequence, characterization, and in vitro reaction properties of 19 unique telomeres. Surprisingly, a variation of greater than 160-fold in the initial reaction rates of in vitro ResT-mediated telomere resolution was observed between the most active and least active telomeres. Moreover, three of the hairpin telomeres were completely inactive in vitro, but their in vivo functionality was demonstrated. Our results provide important new information on the structure and function of the B. burgdorferi telomeres and suggest the possibility that factors besides the telomere resolvase ResT may influence the reaction in vivo and rescue those telomeres that are not functional in vitro with ResT alone.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Invariant natural killer T cells act as an extravascular cytotoxic barrier for joint-invading Lyme Borrelia

Woo-Yong Lee; Maria-Jesus Sanz; Connie Hoi Yee Wong; Pierre-Olivier Hardy; Aydan Salman-Dilgimen; Tara J. Moriarty; George Chaconas; Adriana Marques; Roman Krawetz; Christopher H. Mody; Paul Kubes

Significance Invariant natural killer T cells (iNKT) have been found primarily patrolling inside blood vessels in the liver, where they respond to bacterial glycolipids presented by CD1d on liver macrophages. We show joint iNKT cells are localized outside of blood vessels and respond directly to the joint-homing pathogen, Borrelia burgdorferi, which causes Lyme borreliosis using multichannel spinning-disk intravital microscopy. These iNKT cells interacted with B. burgdorferi at the vessel wall and disrupted its dissemination attempts into joints. Successful penetrance of B. burgdorferi out of the vasculature and into the joint tissue was met by a lethal attack by extravascular iNKT cells through a granzyme-dependent pathway. These results suggest a critical extravascular iNKT cell immune surveillance in joints that functions as a cytotoxic barrier. CXCR6-GFP+ cells, which encompass 70% invariant natural killer T cells (iNKT cells), have been found primarily patrolling inside blood vessels in the liver. Although the iNKT cells fail to interact with live pathogens, they do respond to bacterial glycolipids presented by CD1d on liver macrophage that have caught the microbe. In contrast, in this study using dual laser multichannel spinning-disk intravital microscopy of joints, the CXCR6-GFP, which also made up 60–70% iNKT cells, were not found in the vasculature but rather closely apposed to and surrounding the outside of blood vessels, and to a lesser extent throughout the extravascular space. These iNKT cells also differed in behavior, responding rapidly and directly to joint-homing pathogens like Borrelia burgdorferi, which causes Lyme disease. These iNKT cells interacted with B. burgdorferi at the vessel wall and disrupted dissemination attempts by these microbes into joints. Successful penetrance of B. burgdorferi out of the vasculature and into the joint tissue was met by a lethal attack by extravascular iNKT cells through a granzyme-dependent pathway, an observation also made in vitro for iNKT cells from joint but not liver or spleen. These results suggest a novel, critical extravascular iNKT cell immune surveillance in joints that functions as a cytotoxic barrier and explains a large increase in pathogen burden of B. burgdorferi in the joint of iNKT cell-deficient mice, and perhaps the greater susceptibility of humans to this pathogen because of fewer iNKT cells in human joints.


Biology Open | 2013

Interactions between the discoidin domain receptor 1 and β1 integrin regulate attachment to collagen

Lisa A. Staudinger; Stephen J. Spano; Wilson Lee; Nuno M. Coelho; Dhaarmini Rajshankar; Michelle P. Bendeck; Tara J. Moriarty; Christopher A. McCulloch

Summary Collagen degradation by phagocytosis is essential for physiological collagen turnover and connective tissue homeostasis. The rate limiting step of phagocytosis is the binding of specific adhesion receptors, which include the integrins and discoidin domain receptors (DDR), to fibrillar collagen. While previous data suggest that these two receptors interact, the functional nature of these interactions is not defined. In mouse and human fibroblasts we examined the effects of DDR1 knockdown and over-expression on &bgr;1 integrin subunit function. DDR1 expression levels were positively associated with enhanced contraction of floating and attached collagen gels, increased collagen binding and increased collagen remodeling. In DDR1 over-expressing cells compared with control cells, there were increased numbers, area and length of focal adhesions immunostained for talin, paxillin, vinculin and activated &bgr;1 integrin. After treatment with the integrin-cleaving protease jararhagin, in comparison to controls, DDR1 over-expressing cells exhibited increased &bgr;1 integrin cleavage at the cell membrane, indicating that DDR1 over-expression affected the access and susceptibility of cell-surface &bgr;1 integrin to the protease. DDR1 over-expression was associated with increased glycosylation of the &bgr;1 integrin subunit, which when blocked by deoxymannojirimycin, reduced collagen binding. Collectively these data indicate that DDR1 regulates &bgr;1 integrin interactions with fibrillar collagen, which positively impacts the binding step of collagen phagocytosis and collagen remodeling.


Cell Reports | 2016

Biomechanics of Borrelia burgdorferi Vascular Interactions

Rhodaba Ebady; Alexandra F. Niddam; Anna E. Boczula; Yae Ram Kim; Nupur Gupta; Tian Tian Tang; Tanya Odisho; Hui Zhi; Craig A. Simmons; Jon T. Skare; Tara J. Moriarty

SUMMARY Systemic dissemination of microbes is critical for progression of many infectious diseases and is associated with most mortality due to bacterial infection. The physical mechanisms mediating a key dissemination step, bacterial association with vascular endothelia in blood vessels, remain unknown. Here, we show that endothelial interactions of the Lyme disease spirochete Borrelia burgdorferi under physiological shear stress mechanistically resemble selectin-dependent leukocyte rolling. Specifically, these interactions are mediated by transfer of mechanical load along a series of adhesion complexes and are stabilized by tethers and catch bond properties of the bacterial adhesin BBK32. Furthermore, we found that the forces imposed on adhesive bonds under flow may be small enough to permit active migration driven by bacterial flagellar motors. These findings provide insight into the biomechanics of bacterial-vascular interactions and demonstrate that disseminating bacteria and circulating host immune cells share widely conserved mechanisms for interacting with endothelia under physiological shear stress.

Collaboration


Dive into the Tara J. Moriarty's collaboration.

Top Co-Authors

Avatar

George Chaconas

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge