Tara Thiemann
University of California, Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tara Thiemann.
Molecular Ecology | 2006
Michel A. Slotman; Frédéric Tripet; Anthony J. Cornel; Yoosook Lee; Lisa J. Reimer; Tara Thiemann; Etienne Fondjo; Abrahamane Fofana; Sekou F. Traore; Gregory C. Lanzaro
The principal vector of malaria in sub‐Saharan Africa, Anopheles gambiae is subdivided into two molecular forms M and S. Additionally, several chromosomal forms, characterized by the presence of various inversion polymorphisms, have been described. The molecular forms M and S each contain several chromosomal forms, including the Savanna, Mopti and Forest forms. The M and S molecular forms are now considered to be the reproductive units within A. gambiae and it has recently been argued that a low recombination rate in the centromeric region of the X chromosome has facilitated isolation between these forms. The status of the chromosomal forms remains unclear however. Therefore, we studied genetic differentiation between Savanna S, Forest S, Forest M and Mopti M populations using microsatellites. Genetic differentiation between Savanna S and Forest S populations is very low (FST = 0.0053 ± 0.0049), even across large distances. In comparison, the Mopti M and Forest M populations show a relatively high degree of genetic differentiation (FST = 0.0406 ± 0.0054) indicating that the M molecular form may not be a single entity, but could be subdivided into at least two distinct chromosomal forms. Previously it was proposed that inversions have played a role in the origin of species within the A. gambiae complex. We argue that a possible subdivision within the M molecular form could be understood through this process, with the acquisition of inversions leading to the expansion of the M molecular form into new habitat, dividing it into two distinct chromosomal forms.
Journal of Medical Entomology | 2010
William K. Reisen; Tara Thiemann; Christopher M. Barker; Helen Lu; Brian D. Carroll; Ying Fang; Hugh D. Lothrop
ABSTRACT Culex tarsalis Coquillett, Cx. quinquefasciatus Say, and Cx. pipiens L. were collected during the warm winter of 2009 using dry ice-baited and gravid traps and walk-in red boxes positioned in desert, urban, and agricultural habitats in Riverside, Los Angeles, Kern, and Yolo Counties. Temperatures exceeded the preceding 50 yr averages in all locations for most of January, whereas rainfall was absent or below average. Abundance of Culex species in traps during January ranged from 83 to 671% of the prior 5 yr average in all locations. Few females collected resting were in diapause during January based on follicular measurements. Evidence for early season gonotrophic activity included the detection of freshly bloodied, gravid, and parous females in resting collections, gravid oviposition site-seeking females in gravid female traps, and nulliparous and parous host-seeking females at dry ice-baited traps. Female Culex seemed to employ multiple overwintering strategies in California, including larval and adult quiescence, adult female diapause, and an intermediate situation with adult females collected with enlarged follicles, but without evident vitellogenesis. West Nile, St. Louis, or western equine encephalitis viruses were not detected in 198 pools of adults or 56 pools of adults reared from field-collected immatures collected during January and February 2009. Our preliminary data may provide insight into how climate change may extend the mosquito season in California.
Journal of Medical Entomology | 2012
Tara Thiemann; D. A. Lemenager; S. Kluh; Brian D. Carroll; Hugh D. Lothrop; William K. Reisen
ABSTRACT West Nile virus (family Flaviviridae, genus Flavivirus, WNV) is now endemic in California across a variety of ecological regions that support a wide diversity of potential avian and mammalian host species. Because different avian hosts have varying competence for WNV, determining the blood-feeding patterns of Culex (Diptera: Culicidae) vectors is a key component in understanding the maintenance and amplification of the virus as well as tangential transmission to humans and horses. We investigated the blood-feeding patterns of Culex tarsalis Coquillett and members of the Culex pipiens L. complex from southern to northern California. Nearly 100 different host species were identified from 1,487 bloodmeals, by using the mitochondrial gene cytochrome c oxidase I (COI). Cx. tarsalis fed on a higher diversity of hosts and more frequently on nonhuman mammals than did the Cx. pipiens complex. Several WNV-competent host species, including house finch and house sparrow, were common bloodmeal sources for both vector species across several biomes and could account for WNV maintenance and amplification in these areas. Highly competent American crow, western scrub-jay and yellow-billed magpie also were fed upon often when available and are likely important as amplifying hosts for WNV in some areas. Neither species fed frequently on humans (Cx. pipiens complex [0.4%], Cx. tarsalis [0.2%]), but with high abundance, both species could serve as both enzootic and bridge vectors for WNV.
PLOS Neglected Tropical Diseases | 2011
Tara Thiemann; Sarah S. Wheeler; Christopher M. Barker; William K. Reisen
Host selection by vector mosquitoes is a critical component of virus proliferation, particularly for viruses such as West Nile (WNV) that are transmitted enzootically to a variety of avian hosts, and tangentially to dead-end hosts such as humans. Culex tarsalis is a principal vector of WNV in rural areas of western North America. Based on previous work, Cx. tarsalis utilizes a variety of avian and mammalian hosts and tends to feed more frequently on mammals in the late summer than during the rest of the year. To further explore this and other temporal changes in host selection, bloodfed females were collected at a rural farmstead and heron nesting site in Northern California from May 2008 through May 2009, and bloodmeal hosts identified using either a microsphere-based array or by sequencing of the mitochondrial cytochrome c oxidase I (COI) gene. Host composition during summer was dominated by four species of nesting Ardeidae. In addition, the site was populated with various passerine species as well as domestic farm animals and humans. When present, Cx. tarsalis fed predominantly (>80%) upon the ardeids, with Black-crowned Night-Herons, a highly competent WNV host, the most prevalent summer host. As the ardeids fledged and left the area and mosquito abundance increased in late summer, Cx. tarsalis feeding shifted to include more mammals, primarily cattle, and a high diversity of avian species. In the winter, Yellow-billed Magpies and House Sparrows were the predominant hosts, and Yellow-billed Magpies and American Robins were fed upon more frequently than expected given their relative abundance. These data demonstrated that host selection was likely based both on host availability and differences in utilization, that the shift of bloodfeeding to include more mammalian hosts was likely the result of both host availability and increased mosquito abundance, and that WNV-competent hosts were fed upon by Cx. tarsalis throughout the year.
Genetics | 2006
Michel A. Slotman; Lisa J. Reimer; Tara Thiemann; Guimogo Dolo; Etienne Fondjo; Gregory C. Lanzaro
Genetic differentiation between the largely sympatric molecular forms M and S of Anopheles gambiae appears mostly limited to division 6 and part of division 5 of the X chromosome. This region is adjacent to the centromere and includes the rDNA that was used to define these forms. This localized differentiation between populations that experience gene flow strongly suggests that this region contains genes responsible for reproductive isolation. Regions adjacent to centromeres are known to experience less recombination in several species and it has recently been suggested that low recombination rates can facilitate the accumulation and maintenance of isolation genes in partially isolated populations. Therefore, we measured the recombination rate in division 5D/6 directly and estimate that it is at least 16-fold reduced across this region compared to the remainder of the X chromosome. Additionally, sequence data from four loci from field-collected mosquitoes from several West African countries show very strong differentiation between the molecular forms in division 5D/6, whereas none was observed in two loci elsewhere on the X chromosome. Furthermore, genetic variation was substantially lower in division 5D/6 compared to the two reference loci, and the inferred genealogies of the division 5D/6 genes show patterns consistent with selective sweeps. This suggests that the reduced recombination rate has increased the effect of selection on this region and that our data are consistent with the hypothesis that reduced recombination rates can play a role in the accumulation of isolation genes in the face of gene flow.
Journal of Medical Entomology | 2008
Dia-Eldin A. Elnaiem; Kara Kelley; Stan A. Wright; Rhonda Laffey; Glenn Yoshimura; Marcia Reed; Gary W. Goodman; Tara Thiemann; Lisa J. Reimer; William K. Reisen; David A. Brown
Abstract In response to an epidemic amplification of West Nile virus (family Flaviviridae, genus Flavivirus, WNV), the Sacramento and Yolo Mosquito and Vector Control District (SYMVCD) sprayed ultralow-volume (ULV) formulations of pyrethrin insecticide (Evergreen EC 60-6: 6% pyrethrin insecticide, 60% piperonyl butoxide; MGK, Minneapolis, MN, applied as 0.003 kg/ha [0.0025 lb/acre]) over 218 km2 in north Sacramento and 243.5 km2 in south Sacramento on three consecutive evenings in August 2005. We evaluated the impact of this intervention in north Sacramento on the abundance and WNV infection rates of Culex pipiens L. and Culex tarsalis Coquillett. Mortality rates of caged Cx. tarsalis sentinels ranged from 0% under dense canopy to 100% in open fields. A comparison of weekly geometric mean mosquito abundance in CO2-baited traps in sprayed and unsprayed areas before and after treatment indicated a 75.0 and 48.7% reduction in the abundance of Cx. pipiens and Cx. tarsalis, respectively. This reduction was statistically significant for Cx. pipiens, the primary vector of WNV, with highest abundance in this urban area, but not for Cx. tarsalis, which is more associated with rural areas. The infection rates of WNV in Cx. pipiens and Cx. tarsalis collected from the spray zone were 8.2 and 4.3 per 1,000 female mosquitoes in the 2 wk before and the 2 wk after applications of insecticide, respectively. In comparison, WNV infection rates in Cx. pipiens and Cx. tarsalis collected at same time interval in the unsprayed zone were 2.0 and 8.7 per 1,000, respectively. Based on the reduction in vector abundance and its effects on number of infective bites received by human population, we concluded that the aerial application of pyrethrin insecticide reduced the transmission intensity of WNV and decreased the risk of human infection.
Molecular Ecology Resources | 2012
Tara Thiemann; Aaron C. Brault; Holly B. Ernest; William K. Reisen
For vectorborne infections, host selection by bloodfeeding arthropods dictates the interaction between host and pathogen. Because Culex mosquitoes that transmit West Nile virus (WNV) feed both on mammalian and avian hosts with varying competence, understanding the bloodfeeding patterns of these mosquitoes is important for understanding the transmission dynamics of WNV. Herein, we describe a new microsphere‐based assay using Luminex xMAP® technology to rapidly identify 15 common hosts of Culex mosquitoes at our California study sites. The assay was verified with over 100 known vertebrate species samples and was used in conjunction with DNA sequencing to identify over 125 avian and mammalian host species from unknown Culex bloodmeals, more quickly and with less expense than sequencing alone. In addition, with multiplexed labelled probes, this microsphere array identified mixed bloodmeals that were difficult to discern with traditional sequencing. The microsphere set was easily expanded or reduced according to host range in a specific area, and this assay has made it possible to rapidly screen thousands of Culex spp. bloodmeals to extend our understanding of WNV transmission patterns.
Journal of Medical Entomology | 2005
Frédéric Tripet; Tara Thiemann; Greg Lanzaro
Abstract Previous studies have shown that sympatric populations of M and S molecular forms of Anopheles gambiae sensu stricto exhibit strong assortative mating. In the few documented cases of cross-mating between M and S forms, females that mated with a male of the alternative form were often also mated with a male of their own form. A potential explanation for the association between cross-mating and double mating could be that male accessory gland or sperm proteins that are responsible for inducing refractoriness to further mating by females have diverged between the M and S forms. This mechanism of postmating reproductive isolation would have important implications for our understanding of the speciation processes in the An. gambiae complex. We tested for this mechanism, by comparing the likelihood of mating, feeding, and laying eggs, as well as the fertility of females presented with males of their own form or the alternate form in the laboratory. We also compared the likelihood of remating in cross-mated and assortatively-mated females, and we analyzed their progeny to unravel patterns of sperm precedence. We found that cross-mated females differed from assortatively-mated females only in terms of egg-hatching rate and larval survival but that these effects could be attributed to hybrid vigor rather than differential response to seminal products. Cross-mating between forms was not associated with remating behavior. These results indicate that the sex proteins responsible for inhibiting further insemination and triggering the gonotrophic cycle in females have not diverged between these M and S populations. We discuss alternative explanations for the patterns of cross-mating and multiple mating observed in the field.
Journal of Medical Entomology | 2012
Tara Thiemann; William K. Reisen
ABSTRACT Determining the bloodmeal hosts of the Culex vectors of encephalitis viruses such as West Nile virus is essential for understanding the role of these mosquitoes in enzootic and epidemic transmission. Although molecular techniques have increased our knowledge of blood feeding patterns by allowing host identification to the species level, few studies have focused on the role that sampling methods may play in determining these patterns. In the current study, we identified 644 bloodmeals from Culex tarsalis Coquillett and Culex quinquefasciatus Say females collected in CO2 traps (dry ice-baited Center for Disease Control traps), in gravid traps, and aspirated from resting sites. There was no significant difference in the bloodmeal host apportionment in sampling methods such as gravid traps and resting collections that collected fully engorged females. However, CO2 traps that collected partially fed females had a significantly different apportionment of hosts than either gravid or resting collections. Bloodied females from CO2 traps had either fed on only a small subset of available host species or were biased toward more mammalian and fewer nonpasserine avian feeds than females from other collections. Because both full and partial bloodmeals can contribute to viral transmission, obtaining Culex bloodmeal collections from multiple sampling methods may be important to fully interpret the role of these mosquitoes as maintenance and/or bridge vectors.
Journal of Medical Entomology | 2011
Matthew J. Montgomery; Tara Thiemann; Paula A. Macedo; David A. Brown; Thomas W. Scott
ABSTRACT Mosquitoes in the Culex pipiens complex are competent vectors of West Nile virus (WNV; family Flaviviridae, genus Flavivirus) in the laboratory, and field-collected mosquitoes have tested positive for the virus in California and elsewhere. A better understanding of Cx. pipiens complex blood-feeding patterns will help define the threat that these mosquitoes pose to human health and their role in WNV amplification in northern California. We collected blood-engorged Cx. pipiens complex mosquitoes from resting sites near and away from human habitation in Sacramento and Yolo Counties. Cytochrome c oxidase 1 gene sequences were used to identify the vertebrate species from which blood meals were taken. Of 330 engorged mosquitoes collected at 28 sites from June through August 2007 and May through August 2008, >99% fed on an avian host. Three mosquitoes contained bovine blood and none had fed on a human. American Robins (Turdus migratorius) were bitten most often, and the proportion of American Robin blood meals increased significantly over the summer. Other important avian hosts included House Finches (Carpodacus mexicanus), Barn Swallows (Hirundo rustica), Western Meadowlarks (Sturnella neglecta), and Mourning Doves (Zenaida macroura). In rural areas, Barn Swallows, Brewers Blackbirds (Euphagus cyanocephalus), and House Sparrows (Passer domesticus) were frequent hosts. In settings near human habitation, Mourning Doves and Western Meadowlarks were common hosts. Our data indicate that in north central California mosquitoes in the Cx. pipiens complex may be more important as epiornitic than epidemic vectors of WNV.