Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Taras Makhnevych is active.

Publication


Featured researches published by Taras Makhnevych.


Science | 2010

The Genetic Landscape of a Cell

Michael Costanzo; Anastasia Baryshnikova; Jeremy Bellay; Yungil Kim; Eric D. Spear; Carolyn S. Sevier; Huiming Ding; Judice L. Y. Koh; Kiana Toufighi; Jeany Prinz; Robert P. St.Onge; Benjamin VanderSluis; Taras Makhnevych; Franco J. Vizeacoumar; Solmaz Alizadeh; Sondra Bahr; Renee L. Brost; Yiqun Chen; Murat Cokol; Raamesh Deshpande; Zhijian Li; Zhen Yuan Lin; Wendy Liang; Michaela Marback; Jadine Paw; Bryan Joseph San Luis; Ermira Shuteriqi; Amy Hin Yan Tong; Nydia Van Dyk; Iain M. Wallace

Making Connections Genetic interaction profiles highlight cross-connections between bioprocesses, providing a global view of cellular pleiotropy, and enable the prediction of genetic network hubs. Costanzo et al. (p. 425) performed a pairwise fitness screen covering approximately one-third of all potential genetic interactions in yeast, examining 5.4 million gene-gene pairs and generating quantitative profiles for ∼75% of the genome. Of the pairwise interactions tested, about 3% of the genes investigated interact under the conditions tested. On the basis of these data, a reference map for the yeast genetic network was created. A genome-wide interaction map of yeast identifies genetic interactions, networks, and function. A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for ~75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, and highly correlated profiles delineate specific pathways to define gene function. The global network identifies functional cross-connections between all bioprocesses, mapping a cellular wiring diagram of pleiotropy. Genetic interaction degree correlated with a number of different gene attributes, which may be informative about genetic network hubs in other organisms. We also demonstrate that extensive and unbiased mapping of the genetic landscape provides a key for interpretation of chemical-genetic interactions and drug target identification.


Cell | 2003

Cell cycle regulated transport controlled by alterations in the nuclear pore complex.

Taras Makhnevych; C. Patrick Lusk; Andrea M. Anderson; John D. Aitchison; Richard W. Wozniak

Eukaryotic cells have developed mechanisms for regulating the nuclear transport of macromolecules that control various cellular events including movement through defined stages of the cell cycle. In yeast cells, where the nuclear envelope remains intact throughout the cell cycle, these transport regulatory mechanisms must also function during mitosis. We have uncovered a mechanism for regulating transport that is controlled by M phase specific molecular rearrangements in the nuclear pore complex (NPC). These changes allow a transport inhibitory nucleoporin, Nup53p, to bind the karyopherin Kap121p specifically during mitosis, slowing its movement through the NPC and inducing cargo release. Yeast strains that possess defects in the function of Kap121p or the fidelity of the inhibitory pathway are delayed in mitosis. We propose that fluctuations in Kap121p transport mediated by the NPC contribute to controlling the subcellular distribution of molecules that direct progression through mitosis.


Biochimica et Biophysica Acta | 2012

The role of Hsp90 in protein complex assembly

Taras Makhnevych; Walid A. Houry

Hsp90 is a ubiquitous and essential molecular chaperone that plays central roles in many signaling and other cellular pathways. The in vivo and in vitro activity of Hsp90 depends on its association with a wide variety of cochaperones and cofactors, which form large multi-protein complexes involved in folding client proteins. Based on our proteomic work mapping the molecular chaperone interaction networks in yeast, especially that of Hsp90, as well as, on experiments and results presented in the published literature, one major role of Hsp90 appears to be the promotion and maintenance of proper assembly of protein complexes. To highlight this role of Hsp90, the effect of the chaperone on the assembly of the following seven complexes is discussed in this review: snoRNP, RNA polymerase II, phosphatidylinositol-3 kinase-related protein kinase (PIKK), telomere complex, kinetochore, RNA induced silencing complexes (RISC), and 26S proteasome. For some complexes, it is observed that Hsp90 mediates complex assembly by stabilizing an unstable protein subunit and facilitating its incorporation into the complex; for other complexes, Hsp90 promotes change in the composition of that complex. In all cases, Hsp90 does not appear to be part of the final assembled complex. This article is part of a Special Issue entitled:Heat Shock Protein 90 (HSP90).


Molecular Cell | 2009

Global Map of SUMO Function Revealed by Protein-Protein Interaction and Genetic Networks

Taras Makhnevych; Yaroslav Sydorskyy; Xiaofeng Xin; Tharan Srikumar; Franco J. Vizeacoumar; Stanley M. Jeram; Zhijian Li; Sondra Bahr; Brenda Andrews; Charles Boone; Brian Raught

Systematic functional genomics approaches were used to map a network centered on the small ubiquitin-related modifier (SUMO) system. Over 250 physical interactions were identified using the SUMO protein as bait in affinity purification-mass spectrometry and yeast two-hybrid screens. More than 500 genes and 1400 synthetic genetic interactions were mapped by synthetic genetic array (SGA) analysis using eight different SUMO pathway query genes. The resultant global SUMO network highlights its role in 15 major biological processes and better defines functional relationships between the different components of the SUMO pathway. Using this information-rich resource, we have identified roles for the SUMO system in the function of the AAA ATPase Cdc48p, the regulation of lipid metabolism, localization of the ATP-dependent endonuclease Dna2p, and recovery from the DNA-damage checkpoint.


Journal of Cell Biology | 2002

Karyopherins in nuclear pore biogenesis: a role for Kap121p in the assembly of Nup53p into nuclear pore complexes

C. Patrick Lusk; Taras Makhnevych; Marcello Marelli; John D. Aitchison; Richard W. Wozniak

The mechanisms that govern the assembly of nuclear pore complexes (NPCs) remain largely unknown. Here, we have established a role for karyopherins in this process. We show that the yeast karyopherin Kap121p functions in the targeting and assembly of the nucleoporin Nup53p into NPCs by recognizing a nuclear localization signal (NLS) in Nup53p. This karyopherin-mediated function can also be performed by the Kap95p–Kap60p complex if the Kap121p-binding domain of Nup53p is replaced by a classical NLS, suggesting a more general role for karyopherins in NPC assembly. At the NPC, neighboring nucleoporins bind to two regions in Nup53p. One nucleoporin, Nup170p, associates with a region of Nup53p that overlaps with the Kap121p binding site and we show that they compete for binding to Nup53p. We propose that once targeted to the NPC, dissociation of the Kap121p–Nup53p complex is driven by the interaction of Nup53p with Nup170p. At the NPC, Nup53p exists in two separate complexes, one of which is capable of interacting with Kap121p and another that is bound to Nup170p. We propose that fluctuations between these two states drive the binding and release of Kap121p from Nup53p, thus facilitating Kap121ps movement through the NPC.


Journal of Cell Biology | 2007

The role of karyopherins in the regulated sumoylation of septins

Taras Makhnevych; Christopher Ptak; C. Patrick Lusk; John D. Aitchison; Richard W. Wozniak

In the yeast Saccharomyces cerevisiae, several components of the septin ring are sumoylated during anaphase and then abruptly desumoylated at cytokinesis. We show that septin sumoylation is controlled by the interactions of two enzymes of the sumoylation pathway, Siz1p and Ulp1p, with the nuclear transport machinery. The E3 ligase Siz1p is imported into the nucleus by the karyopherin Kap95p during interphase. In M phase, Siz1p is exported from the nucleus by the karyopherin Kap142p/Msn5p and subsequently targeted to the septin ring, where it participates in septin sumoylation. We also show that the accumulation of sumoylated septins during mitosis is dependent on the interactions of the SUMO isopeptidase Ulp1p with Kap121p and Kap95p–Kap60p and the nuclear pore complex (NPC). In addition to sequestering Ulp1 at the NPC, Kap121p is required for targeting Ulp1p to the septin ring during mitosis. We present a model in which Ulp1p is maintained at the NPC during interphase and transiently interacts with the septin ring during mitosis.


Molecular Systems Biology | 2014

A negative genetic interaction map in isogenic cancer cell lines reveals cancer cell vulnerabilities

Franco J. Vizeacoumar; Roland Arnold; Frederick Vizeacoumar; Megha Chandrashekhar; Alla Buzina; Jordan T.F. Young; Julian H. M. Kwan; Azin Sayad; Patricia Mero; Steffen Lawo; Hiromasa Tanaka; Kevin R. Brown; Anastasia Baryshnikova; Anthony B. Mak; Yaroslav Fedyshyn; Yadong Wang; Glauber C. Brito; Dahlia Kasimer; Taras Makhnevych; Troy Ketela; Alessandro Datti; Mohan Babu; Andrew Emili; Laurence Pelletier; Jeff Wrana; Zev A. Wainberg; Philip M. Kim; Robert Rottapel; Catherine O'Brien; Brenda Andrews

Improved efforts are necessary to define the functional product of cancer mutations currently being revealed through large‐scale sequencing efforts. Using genome‐scale pooled shRNA screening technology, we mapped negative genetic interactions across a set of isogenic cancer cell lines and confirmed hundreds of these interactions in orthogonal co‐culture competition assays to generate a high‐confidence genetic interaction network of differentially essential or differential essentiality (DiE) genes. The network uncovered examples of conserved genetic interactions, densely connected functional modules derived from comparative genomics with model systems data, functions for uncharacterized genes in the human genome and targetable vulnerabilities. Finally, we demonstrate a general applicability of DiE gene signatures in determining genetic dependencies of other non‐isogenic cancer cell lines. For example, the PTEN−/− DiE genes reveal a signature that can preferentially classify PTEN‐dependent genotypes across a series of non‐isogenic cell lines derived from the breast, pancreas and ovarian cancers. Our reference network suggests that many cancer vulnerabilities remain to be discovered through systematic derivation of a network of differentially essential genes in an isogenic cancer cell model.


Molecular Biology of the Cell | 2011

Lumenal interactions in nuclear pore complex assembly and stability

William T. Yewdell; Paolo Colombi; Taras Makhnevych; C. Patrick Lusk

A mechanism of nuclear pore complex assembly into intact nuclear envelopes remains elusive. We explore roles of conserved inner nuclear membrane proteins, Heh1p and Heh2p, in this process. The data support the existence of a lumenal bridge between Heh1p and the nucleoporin Pom152p, which might facilitate early nuclear pore complex assembly events.


Traffic | 2007

Nup53p is a Target of Two Mitotic Kinases, Cdk1p and Hrr25p

C. Patrick Lusk; Daniel D. Waller; Taras Makhnevych; Axel Dienemann; Malcolm Whiteway; David Y. Thomas; Richard W. Wozniak

Nuclear pore complexes (NPCs) form channels across the nuclear envelope and provide the sole sites of molecular exchange between the cytoplasm and nucleoplasm. The NPC is a target of a number of post‐translational modifications, including phosphorylation, yet the functions of these modifications are ill defined. Here, we have investigated the mitotic specific phosphorylation of a yeast nucleoporin Nup53p. Two kinases were identified that phosphorylate Nup53p: the mitotic kinase Cdk1p/Cdc2p/Cdc28p and the casein kinase Hrr25p. Hrr25p was identified by screening 119 yeast kinases for their ability to phosphorylate Nup53p in vitro. Conditional alleles of Hrr25p support the conclusion that Hrr25p phosphorylates Nup53p in vivo. We further demonstrated using solution binding and affinity purification assays, that Hrr25p directly binds Nup53p in an interaction that is destabilized by the phosphorylation of Nup53p. Consistent with this observation, we observed that Hrr25p moves between distinct locations in the cell during the cell cycle including the nucleus, the cortex of the emerging bud and the spindle pole bodies. Cdk1p also contributes to Nup53p phosphorylation as specific inhibition of Cdk1p or mutation of Cdk1p consensus sites partially blocked its phosphorylation. The ability of nup53 alleles containing Cdk1p site mutations to complement synthetic defects of nup53Δnup170Δ strains is linked to a function for Nup53p in the spindle assembly checkpoint.


Molecular and Cellular Biology | 2010

A Novel Mechanism for SUMO System Control: Regulated Ulp1 Nucleolar Sequestration

Yaroslav Sydorskyy; Tharan Srikumar; Stanley M. Jeram; Sarah Wheaton; Franco J. Vizeacoumar; Taras Makhnevych; Yolanda T. Chong; Anne-Claude Gingras; Brian Raught

ABSTRACT The small ubiquitin-related modifiers (SUMOs) are evolutionarily conserved polypeptides that are covalently conjugated to protein targets to modulate their subcellular localization, half-life, or activity. Steady-state SUMO conjugation levels increase in response to many different types of environmental stresses, but how the SUMO system is regulated in response to these insults is not well understood. Here, we characterize a novel mode of SUMO system control: in response to elevated alcohol levels, the Saccharomyces cerevisiae SUMO protease Ulp1 is disengaged from its usual location at the nuclear pore complex (NPC) and sequestered in the nucleolus. We further show that the Ulp1 region previously demonstrated to interact with the karyopherins Kap95 and Kap60 (amino acids 150 to 340) is necessary and sufficient for nucleolar targeting and that enforced sequestration of Ulp1 in the nucleolus significantly increases steady-state SUMO conjugate levels, even in the absence of alcohol. We have thus characterized a novel mechanism of SUMO system control in which the balance between SUMO-conjugating and -deconjugating activities at the NPC is altered in response to stress via relocalization of a SUMO-deconjugating enzyme.

Collaboration


Dive into the Taras Makhnevych's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian Raught

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge