Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tassie L. Collins is active.

Publication


Featured researches published by Tassie L. Collins.


Journal of Virology | 2008

Gene Expression Analysis of Host Innate Immune Responses during Lethal H5N1 Infection in Ferrets

Cheryl M. Cameron; Mark J. Cameron; Jesus F. Bermejo-Martin; Longsi Ran; Luoling Xu; Patricia V. Turner; Ran Ran; Ali Danesh; Yuan Fang; Pak-Kei M. Chan; Nutan Mytle; Timothy J. Sullivan; Tassie L. Collins; Michael G. Johnson; Julio C. Medina; Thomas Rowe; David J. Kelvin

ABSTRACT How viral and host factors contribute to the severe pathogenicity of the H5N1 subtype of avian influenza virus infection in humans is poorly understood. We identified three clusters of differentially expressed innate immune response genes in lungs from H5N1 (A/Vietnam/1203/04) influenza virus-infected ferrets by oligonucleotide microarray analysis. Interferon response genes were more strongly expressed in H5N1-infected ferret lungs than in lungs from ferrets infected with the less pathogenic H3N2 subtype. In particular, robust CXCL10 gene expression in H5N1-infected ferrets led us to test the pathogenic role of signaling via CXCL10s cognate receptor, CXCR3, during H5N1 influenza virus infection. Treatment of H5N1-infected ferrets with the drug AMG487, a CXCR3 antagonist, resulted in a reduction of symptom severity and delayed mortality compared to vehicle treatment. We contend that unregulated host interferon responses are at least partially responsible for the severity of H5N1 infection and provide evidence that attenuating the CXCR3 signaling pathway improves the clinical course of H5N1 infection in ferrets.


Cancer Research | 2006

Antagonism of CXCR3 Inhibits Lung Metastasis in a Murine Model of Metastatic Breast Cancer

Tonya C. Walser; Salah Rifat; Xinrong Ma; Namita Kundu; Christopher W. Ward; Olga Goloubeva; Michael G. Johnson; Julio C. Medina; Tassie L. Collins; Amy M. Fulton

Tumor cells aberrantly express chemokines and/or chemokine receptors, and some may promote tumor growth and metastasis. We examined the expression and function of chemokine receptor CXCR3 in a syngeneic murine model of metastatic breast cancer. By flow cytometry, CXCR3 was detected in all murine mammary tumor cell lines examined. All human breast cancer cell lines examined also expressed CXCR3, as did the immortalized but nontumorigenic MCF-10A cell line. Interaction of CXCR3 ligands, CXCL9, CXCL10, and CXCL11, with CXCR3 on the highly malignant murine mammary tumor cell line 66.1 resulted in intracellular calcium mobilization and chemotaxis in vitro. To test the hypothesis that tumor metastasis is facilitated by CXCR3 expressed by tumor cells, we employed a small molecular weight antagonist of CXCR3, AMG487. 66.1 tumor cells were pretreated with AMG487 prior to i.v. injection into immune-competent female mice. Antagonism of CXCR3 on 66.1 tumor cells inhibited experimental lung metastasis, and this antimetastatic activity was compromised in mice depleted of natural killer cells. Systemic administration of AMG487 also inhibited experimental lung metastasis. In contrast to the antimetastatic effect of AMG487, local growth of 66.1 mammary tumors was not affected by receptor antagonism. These studies indicate that murine mammary tumor cells express CXCR3 which facilitates the development of lung metastases. These studies also indicate for the first time that a small molecular weight antagonist of CXCR3 has the potential to inhibit tumor metastasis.


International Journal of Cancer | 2009

Antagonism of chemokine receptor CXCR3 inhibits osteosarcoma metastasis to lungs

Emmanuelle Pradelli; Babou Karimdjee-Soilihi; Jean François Michiels; Jean-Ehrland Ricci; Marie Ange Millet; Fanny Vandenbos; Timothy J. Sullivan; Tassie L. Collins; Michael G. Johnson; Julio C. Medina; Eugenie S. Kleinerman; Annie Schmid-Alliana; Heidy Schmid-Antomarchi

Metastasis continues to be the leading cause of mortality for patients with cancer. Several years ago, it became clear that chemokines and their receptors could control the tumor progress. CXCR3 has now been identified in many cancers including osteosarcoma and CXCR3 ligands were expressed by lungs that are the primary sites to which this tumor metastasize. This study tested the hypothesis that disruption of the CXCR3/CXCR3 ligands complexes could lead to a decrease in lungs metastasis. The experimental design involved the use of the CXCR3 antagonist, AMG487 and 2 murine models of osteosarcoma lung metastases. After tail vein injection of osteosarcoma cells, mice that were systematically treated with AMG487 according to preventive or curative protocols had a significant reduction in metastatic disease. Treatment of osteosarcoma cells in vitro with AMG487 led to decreased migration, decreased matrix metalloproteinase activity, decreased proliferation/survival and increased caspase‐independent death. Taken together, our results support the hypothesis that CXCR3 and their ligands intervene in the initial dissemination of the osteosarcoma cells to the lungs and stimulate the growth and expansion of the metastatic foci in later stages. Moreover, these studies indicate that targeting CXCR3 may specifically inhibit tumor metastasis without adversely affecting antitumoral host response.


Transplantation | 2009

CXCR3 Antagonism Impairs the Development of Donor-Reactive, IFN-γ-Producing Effectors and Prolongs Allograft Survival

Joshua M. Rosenblum; Qi Wei Zhang; Gerald Siu; Tassie L. Collins; Timothy J. Sullivan; Daniel J. Dairaghi; Julio C. Medina; Robert L. Fairchild

Background. Current immunosuppression regimens are toxic to transplant recipients and, in many cases, acute rejection episodes occur because of escape of donor-reactive lymphocytes from the immunosuppression. T cells are the mediators of acute, cell-mediated graft damage and are hypothesized to use the CXCR3 chemokine axis for migration into the allograft. This study investigates the effect of CXCR3 blockade using a nonpeptide, small molecule inhibitor, AMG1237845, in murine cardiac allograft survival. Methods. C57BL/6 (H-2b) mice received vascularized cardiac allografts from A/J (H-2a) donors and were treated with the CXCR3 antagonist. Histologic and flow cytometric analyses were used to measure infiltration of leukocytes, and quantitative reverse-transcriptase polymerase chain reaction and interferon-&ggr; ELISPOT assays were used to measure donor-specific reactivity. Results. CXCR3 antagonism modestly prolonged allograft survival compared with vehicle treatment, but at time-matched intervals posttransplant, neutrophil, CD8+, and CD4+ T cell infiltration was indistinguishable. Although proliferation of donor-reactive naïve T cells was unaffected by CXCR3 antagonism, the frequency of interferon-&ggr;-producing cells in the recipient spleen was significantly reduced by AMG1237845 treatment. CXCR3 blockade for 30 days synergized with short-term, low-dose anti-CD154 monoclonal antibodies to prolong survival past 50 days in 75% of grafts and past 80 days in 25% of the cases. Conclusions. These results indicate that in synergy with co-stimulation blockade, CXCR3 is a viable therapeutic target to prevent acute graft rejection.


Bioorganic & Medicinal Chemistry Letters | 2009

Imidazo-pyrazine derivatives as potent CXCR3 antagonists

Xiaohui Du; Darin Gustin; Xiaoqi Chen; Jason Duquette; Lawrence R. McGee; Zhulun Wang; Karen Ebsworth; Kirk Henne; Bryan Lemon; Ji Ma; Shichang Miao; Emmanuel Sabalan; Timothy J. Sullivan; George Tonn; Tassie L. Collins; Julio C. Medina

A general way of improving the potency of CXCR3 antagonists with fused hetero-bicyclic cores was identified. Optimization efforts led to the discovery of a series of imidazo-pyrazine derivatives with improved pharmacokinetic properties in addition to increased potency. The efficacy of the lead compound 21 is evaluated in a mouse lung inflammation model.


Bioorganic & Medicinal Chemistry Letters | 2009

Optimization of a series of quinazolinone-derived antagonists of CXCR3.

Jiwen Liu; Zice Fu; An-Rong Li; Michael Johnson; Liusheng Zhu; Andrew P. Marcus; Jay Danao; Timothy J. Sullivan; George Tonn; Tassie L. Collins; Julio C. Medina

The evaluation of the CXCR3 antagonist AMG 487 in clinic trials was complicated due to the formation of an active metabolite. In this Letter, we will discuss the further optimization of the quinazolinone series that led to the discovery of compounds devoid of the formation of the active metabolite that was seen with AMG 487. In addition, these compounds also feature increased potency and good pharmacokinetic properties. We will also discuss the efficacy of the lead compound 34 in a mouse model of cellular recruitment induced by bleomycin.


Bioorganic & Medicinal Chemistry Letters | 2009

Discovery and optimization of CRTH2 and DP dual antagonists

Jiwen Liu; Zice Fu; Yingcai Wang; M.J. Schmitt; Alan Huang; Derek Marshall; George Tonn; Lisa Seitz; Timothy J. Sullivan; H. Lucy Tang; Tassie L. Collins; Julio C. Medina

A series of phenylacetic acid derivatives was discovered as CRTH2 antagonists. Modification of the series led to compounds that are also antagonists of DP. Since activation of CRTH2 and DP are believed to play key roles in mediating responses of asthma and other immune diseases, this series was optimized to increase the dual antagonistic activities and improve pharmacokinetic properties. These efforts led to selection of AMG 009 as a clinical candidate.


ACS Medicinal Chemistry Letters | 2011

Discovery of AMG 853, a CRTH2 and DP Dual Antagonist.

Jiwen Liu; An-Rong Li; Yingcai Wang; Michael G. Johnson; Yongli Su; Wang Shen; Xuemei Wang; Sarah E. Lively; Matthew Brown; SuJen Lai; Felix Gonzalez-Lopez de Turiso; Qingge Xu; Bettina Van Lengerich; M.J. Schmitt; Zice Fu; Shanna Lawlis; Lisa Seitz; Jay Danao; Jill C. M. Wait; Qiuping Ye; Hua Lucy Tang; Mark P. Grillo; Tassie L. Collins; Timothy J. Sullivan; Julio C. Medina

Prostaglandin D2 (PGD2) plays a key role in mediating allergic reactions seen in asthma, allergic rhinitis, and atopic dermatitis. PGD2 exerts its activity through two G protein-coupled receptors (GPCRs), prostanoid D receptor (DP or DP1), and chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2 or DP2). We report the optimization of a series of phenylacetic acid derivatives in an effort to improve the dual activity of AMG 009 against DP and CRTH2. These efforts led to the discovery of AMG 853 (2-(4-(4-(tert-butylcarbamoyl)-2-(2-chloro-4-cyclopropylphenyl sulfonamido)phenoxy)-5-chloro-2-fluorophenyl)acetic acid), which is being evaluated in human clinical trials for asthma.


Bioorganic & Medicinal Chemistry Letters | 2012

Discovery of potent and specific CXCR3 antagonists.

Xiaoqi Chen; Jeff Mihalic; Jeff Deignan; Darin Gustin; Jason Duquette; Xiaohui Du; Johann Chan; Zice Fu; Michael Johnson; An-Rong Li; Kirk Henne; Timothy J. Sullivan; Bryan Lemon; Ji Ma; Shichang Miao; George Tonn; Tassie L. Collins; Julio C. Medina

The optimization of a series of 8-aza-quinazolinone analogs for antagonist activity against the CXCR3 receptor is reported. Compounds were optimized to avoid the formation of active metabolites and time-dependent-inhibitors of CYP3A4. In addition, antagonists showed potent against CXCR3 activity in whole blood and optimized to avoid activity in the chromosomal aberration assay. Compound 25 was identified as having the optimal balance of CXCR3 activity and pharmacokinetic properties across multiple pre-clinical species, which are reported herein.


Archive | 2007

Antagonists of CXCR3: a review of current progress

Tassie L. Collins; Michael G. Johnson; Julio C. Medina

CXCR3 was cloned and identified as a receptor for CXCL9 and CXCL10 by Loetscher, et al., in 1996 [1], and was subsequently identified as a receptor for CXCL11 [2]. CXCL9, CXCL10 and CXCL11 are selective, potent agonists of CXCR3 (Kd 0.1–5 nM) [1]–[4]. Additional chemokines have been reported to bind to CXCR3 (e.g., CXCL13 [5] and CCL11 [6]), however the reported affinities are generally weak and the biological significance of the interactions is questionable. Similarly, the ligands for CXCR3 have been reported to be antagonists of CCR3 [7] and CCR5 [8], but high concentrations of the CXCR3 ligands are required to achieve inhibition of CCR3 or CCR5 biological functions.

Collaboration


Dive into the Tassie L. Collins's collaboration.

Researchain Logo
Decentralizing Knowledge