Tatiana Gianni
University of Bologna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tatiana Gianni.
Glia | 2001
Elisabetta Polazzi; Tatiana Gianni; Antonio Contestabile
The microglia are the immune cell population of the nervous system and play important roles both in normal function and in disease. Reciprocal neuron–microglia interactions are not well understood, in particular those concerning the crosstalk between the two cell populations when neuronal damage does occur. We have used a well‐established model of apoptosis in cerebellar granule neurons to test the effect of co‐culturing microglial cells with them or of exposing them to microglia‐conditioned medium. Microglial cells, derived from cortical or cerebellar mixed glial cultures and plated over cerebellar granule neurons, protected these neurons from apoptosis induced by shifting them, at 7 days in vitro, for 24 h from a depolarizing (high‐potassium) to a nondepolarizing (low‐potassium) medium. The same result was achieved when microglial cells obtained from mixed glial cortical cultures were plated over a membrane well insert in the culture chamber, permitting medium exchange without physical contact with granule neurons. A similar result was obtained when the low‐potassium, apoptosis‐inducing medium was conditioned by 48‐h exposure to microglial cells; 24‐h exposure to microglial cells was not enough to confer neuroprotective capability to the conditioned medium. However in double‐conditioned medium experiments, in which the medium was first exposed to apoptotic neurons and then to microglial cells, unknown signal(s) released by apoptotic neurons, conferred to the 24‐h conditioned medium a strong neuroprotective action, similar to that observed in the co‐cultures experiments. This finding, together with the results from co‐culture experiments, is explained by admitting that molecules released in the medium by apoptotic neurons potentiate the anti‐apoptotic activity of microglia. Our results, therefore, demonstrate not only that normally microglial cells release in the medium molecule(s) able to rescue neurons from apoptotic death, but that unknown diffusible signal(s) from apoptotic neurons enhance(s) microglial neuroprotective properties as well. GLIA 36:271–280, 2001.
Journal of Virology | 2005
Tatiana Gianni; Pier Luigi Martelli; Rita Casadio; Gabriella Campadelli-Fiume
ABSTRACT Human herpesviruses enter cells by fusion with target membranes, a process that requires three conserved glycoproteins: gB, gH, and gL. How these glycoproteins execute fusion is unknown. Neural network bioinformatics predicted a membrane α-helix contained within the ectodomain of herpes simplex virus (HSV) gH, positionally conserved in the gH of all examined herpesviruses. Evidence that it has attributes of an internal fusion peptide rests on the following lines of evidence. (i) The predicted membrane α-helix has the attribute of a membrane segment, since it transformed a soluble form of gD into a membrane-bound gD. (ii) It represents a critical domain of gH. Its partial or entire deletion, or substitution of critical residues inhibited HSV infectivity and fusion in the cell-cell fusion assay. (iii) Its replacement with the fusion peptide from human immunodeficiency virus gp41 or from vesicular stomatitis virus G partially rescued HSV infectivity and cell-cell fusion. The corresponding antisense sequences did not. (iv) The predicted α-helix located in the varicella-zoster virus gH ectodomain can functionally substitute the native HSV gH membrane α-helix, suggesting a conserved function in the human herpesviruses. We conclude that HSV gH exhibits features typical of viral fusion glycoproteins and that this property is likely conserved in the Herpesviridae family.
Journal of Virology | 2004
Tatiana Gianni; Gabriella Campadelli-Fiume; Laura Menotti
ABSTRACT Herpes simplex virus (HSV) enters cells by fusion with target membranes, commonly the plasma membrane. In some cells, including CHO cells expressing the nectin1 or herpesvirus entry mediator receptors, entry occurs through an endocytic route. We report the following results. (i) When expressed in J cells, nectin1 and HVEM mediated a pathway of entry insensitive to endosome acidification inhibitors. (ii) A chimeric nectin1 receptor competent for endosomal uptake by fusion of the nectin1 ectodomain with the transmembrane sequence and cytoplasmic tail of the epidermal growth factor receptor (EGFR1) (nectin1-EGFR1) and chimeric nectin1 sorted to lipid rafts by a glycosylphosphatidylinositol anchor mediated endocytic entry blocked by the early endosome inhibitor wortmannin and by the endosome acidification inhibitors bafilomycin and NH4Cl. (iii) Entry mediated by nectin1-EGFR1 was selectively inhibited by AG1478, a tyrosine phosphorylation inhibitor that targets the EGFR1 cytoplasmic tail and blocks the signaling pathway that culminates in clathrin-dependent uptake of the receptor into endosomes. We draw the following conclusions. (i) The same receptor may initiate different routes of infection, depending on the cell in which it is expressed. Hence, the cell is a determinant that controls whether a given receptor initiates a plasma membrane or an endocytic route of entry. (ii) Receptors whose physiology involves uptake into endosomes or sorting to lipid rafts are suitable to serve as HSV receptors. (iii) Structural features of the receptors are additional determinants that control whether HSV entry occurs at the plasma membrane or at endosomes. These findings are relevant to studies of HSV retargeting to specific receptors.
Journal of Biological Chemistry | 2009
Tatiana Gianni; Michele Amasio; Gabriella Campadelli-Fiume
Herpes simplex virus entry into cells requires a multipartite fusion apparatus made of glycoprotein D (gD), gB, and heterodimer gH/gL. gD serves as a receptor-binding glycoprotein and trigger of fusion; its ectodomain is organized in an N-terminal domain carrying the receptor-binding sites and a C-terminal domain carrying the profusion domain, required for fusion but not receptor binding. gB and gH/gL execute fusion. To understand how the four glycoproteins cross-talk to each other, we searched for biochemical defined complexes in infected and transfected cells and in virions. Previously, interactions were detected in transfected whole cells by split green fluorescent protein complementation (Atanasiu, D., Whitbeck, J. C., Cairns, T. M., Reilly, B., Cohen, G. H., and Eisenberg, R. J. (2007) Proc. Natl. Acad. Sci. U. S. A. 104, 18718–18723; Avitabile, E., Forghieri, C., and Campadelli-Fiume, G. (2007) J. Virol. 81, 11532–11537); it was not determined whether they led to biochemical complexes. Infected cells harbor a gD-gH complex (Perez-Romero, P., Perez, A., Capul, A., Montgomery, R., and Fuller, A. O. (2005) J. Virol. 79, 4540–4544). We report that gD formed complexes with gB in the absence of gH/gL and with gH/gL in the absence of gB. Complexes with similar composition were formed in infected and transfected cells. They were also present in virions prior to entry and did not increase at virus entry into the cell. A panel of gD mutants enabled the preliminary location of part of the binding site in gD to gB to the amino acids 240–260 portion and downstream with Thr304-Pro305 as critical residues and of the binding site to gH/gL at the amino acids 260–310 portion with Pro291-Pro292 as critical residues. The results indicate that gD carries composite-independent binding sites for gB and gH/gL, both of which are partly located in the profusion domain.
Journal of Virology | 2012
Valerio Leoni; Tatiana Gianni; Stefano Salvioli; Gabriella Campadelli-Fiume
ABSTRACT A number of sentinels sense incoming herpes simplex virus (HSV) virions and initiate an immediate innate response. The first line of defense at the cell surface is TLR2 (Toll-like receptor 2), whose signature signaling activity leads to activation of the key transcription factor NF-κB. We report that the HSV pathogen-associated molecular patterns for TLR2 are the virion glycoproteins gH/gL and gB, which constitute the conserved fusion core apparatus across the members of the Herpesviridae family. Specifically, virions devoid singly of one of essential fusion glycoproteins (gD, gB, or gH null), able to attach to cells but defective in fusion/entry, were sufficient to elicit the first wave of NF-κB response to HSV. The most effective were the gD-null virions, positive for gH/gL and gB. A soluble form of gB, truncated upstream of the transmembrane sequence (gB730t-st), was produced in human cells and purified by means of a Strep tag. gH/gL and gB were each able to physically interact with TLR2 in coimmunoprecipitation assays, one independently of the other, yet gHt-st/gL, but not gB730t-st, elicited an NF-κB response. Thus, whereas both HSV gH/gL and gB are ligands to TLR2, only gH/gL is sufficient to initiate a signaling cascade which leads to NF-κB activation.
Current Opinion in Virology | 2012
Gabriella Campadelli-Fiume; Laura Menotti; Elisa Avitabile; Tatiana Gianni
Herpes simplex virus (HSV) entry into the cell involves the fusion of the virion envelope with a cellular membrane and delivery of capsid and tegument proteins to the cytoplasm. Our understanding of this phenomenon has greatly increased in recent years. On the virus side, the multipartite nature of the entry-fusion machinery (made of the glycoproteins gD, the heterodimer gH/gL and gB) entails a mechanism of gD activation promoted by the gD encounter with one of its receptor; and cross-talk among the entry-fusion glycoproteins, which culminates in gB activation and fusion execution. On the cell side, machineries and signalling activities are put in place. The number of known receptors and sentinels is increasing. The cell routes the virus through alternative entry pathways by means of routing factors, exemplified by αVβ3-integrin and paired immunoglobulin-like type 2 receptor alpha. Of the signalling events, a key one is the immediate host response to incoming virions. Unexpectedly, this is in part triggered by the same virion components and some cellular factors that also promote virus entry. Hence, a link is emerging between two phenomena so far considered as distinct.
Journal of Virology | 2005
Tatiana Gianni; Laura Menotti; Gabriella Campadelli-Fiume
ABSTRACT Entry of herpes simplex virus 1 (HSV-1) into cells occurs by fusion with cell membranes; it requires gD as the receptor binding glycoprotein and the trigger of fusion, and the trio of the conserved glycoproteins gB, gH, and gL to execute fusion. Recently, we reported that the ectodomain of HSV-1 gH carries a hydrophobic α-helix (residues 377 to 397) with attributes of an internal fusion peptide (T. Gianni, P. L. Martelli, R. Casadio, and G. Campadelli-Fiume, J. Virol. 79:2931-2940, 2005). Downstream of this α-helix, a heptad repeat (HR) with a high propensity to form a coiled coil was predicted between residues 443 and 471 and was designated HR-1. The simultaneous substitution of two amino acids in HR-1 (E450G and L453A), predicted to abolish the coiled coil, abolished the ability of gH to complement the infectivity of a gH-null HSV mutant. When coexpressed with gB, gD, and gL, the mutant gH was unable to promote cell-cell fusion. These defects were not attributed to a defect in heterodimer formation with gL, the gH chaperone, or in trafficking to the plasma membrane. A 25-amino-acid synthetic peptide with the sequence of HR-1 (pep-gHwt25) inhibited HSV replication if present at the time of virus entry into the cell. A scrambled peptide had no effect. The effect was specific, as pep-gHwt25 did not reduce HSV-2 and pseudorabies virus infection. The presence of a functional HR in the HSV-1 gH ectodomain strengthens the view that gH has attributes typical of a viral fusion glycoprotein.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Tatiana Gianni; Valentina Gatta; Gabriella Campadelli-Fiume
HSVs enter cells in a receptor-dependent [nectin1 or herpesviruses entry mediator (HVEM)] fashion by fusion of the viral envelope with plasma membrane (neutral pH compartment), by endocytosis into neutral or acidic compartments, or by macropinocytosis/phagocytosis. The cellular determinants of the route of entry are unknown. Here, we asked what cellular factors determine the pathway of HSV entry. CHO cells lack β3-integrin and the respective α-subunits’ heterodimers. We report that, in the absence of αVβ3-integrin, HSV enters CHO-nectin1 cells through a pathway independent of cholesterol-rich rafts and dynamin2. In the presence of αVβ3-integrin, HSV enters CHO-nectin1 cells through a pathway dependent on cholesterol-rich rafts and dynamin2. HSV enters J-nectin1 and 293T cells through a neutral compartment independent of cholesterol-rich rafts and dynamin2. αVβ3-integrin overexpression in these cells modifies the route of entry to an acidic compartment dependent on cholesterol-rich rafts and dynamin2, hence similar to that in αVβ3-integrin–positive CHO-nectin1 cells. In some cells, the diversion of entry from an integrin- and raft-independent pathway to an acidic compartment requiring cholesterol-rich lipids rafts and dynamin2 is irreversible. Indeed, HSV cannot infect CHO-nectin1-αVβ3 cells through any compartment when the αvβ3-integrin–dependent pathway is blocked by anti-integrin antibody, anti-dynamin2, or anti-acidification drugs. We conclude that the αvβ3-integrin is a determinant in the choice of HSV entry pathway into cells. Because the pathway dictated by αvβ3-integrin is through lipid rafts, the platforms for a number of Toll-like receptors, current findings raise the possibility that αvβ3-integrin acts as a sentinel of innate immunity.
Journal of Virology | 2006
Tatiana Gianni; Angela Piccoli; Carlo Bertucci; Gabriella Campadelli-Fiume
ABSTRACT Herpes simplex virus 1 (HSV-1) entry into cells and cell-cell fusion mediated by HSV-1 glycoproteins require four glycoproteins, gD, gB, gH, gL. Of these, gH is the only one that so far exhibits structural-functional features typical of viral fusion glycoproteins, i.e., a candidate fusion peptide and, downstream of it, a heptad repeat (HR) segment able to form a coiled coil, named HR-1. Here, we show that gH carries a functional HR-2 capable of physical interaction with HR-1. Specifically, mutational analysis of gH aimed at increasing or decreasing the ability of HR-2 to form a coiled coil resulted in an increase or decrease of fusion activity, respectively. HSV infection was modified accordingly. A mimetic peptide with the HR-2 sequence inhibited HSV-1 infection in a specific and dose-dependent manner. Circular dichroism spectroscopy showed that both HR-2 and HR-1 mimetic peptides adopt mainly random conformation in aqueous solution, while a decrease in peptide environmental polarity determines a conformational change, with a significant increase of the α-helical conformation content, in particular, for the HR-1 peptide. Furthermore, HR-1 and HR-2 mimetic peptides formed a stable complex, as revealed in nondenaturing electrophoresis and by circular dichroism. The mixture of HR-1 and HR-2 peptides reversed the inhibition of HSV infection exerted by the single peptides. Complex formation between HR-1 and HR-2 was independent of the presence of adjacent gH sequences and of additional glycoproteins involved in entry and fusion. Altogether, HR-2 adds to the features typical of class 1 fusion glycoproteins exhibited by HSV-1 gH.
PLOS Pathogens | 2013
Tatiana Gianni; Stefano Salvioli; Liudmila S. Chesnokova; Lindsey M. Hutt-Fletcher; Gabriella Campadelli-Fiume
Herpes simplex virus (HSV) - and herpesviruses in general - encode for a multipartite entry/fusion apparatus. In HSV it consists of the HSV-specific glycoprotein D (gD), and three additional glycoproteins, gH/gL and gB, conserved across the Herpesviridae family and responsible for the execution of fusion. According to the current model, upon receptor binding, gD propagates the activation to gH/gL and to gB in a cascade fashion. Questions remain about how the cascade of activation is controlled and how it is synchronized with virion endocytosis, to avoid premature activation and exhaustion of the glycoproteins. We considered the possibility that such control might be carried out by as yet unknown receptors. Indeed, receptors for HSV gB, but not for gH/gL, have been described. In other members of the Herpesviridae family, such as Epstein-Barr virus, integrin receptors bind gH/gL and trigger conformational changes in the glycoproteins. We report that αvβ6- and αvβ8-integrins serve as receptors for HSV entry into experimental models of keratinocytes and other epithelial and neuronal cells. Evidence rests on loss of function experiments, in which integrins were blocked by antibodies or silenced, and gain of function experiments in which αvβ6-integrin was expressed in integrin-negative cells. αvβ6- and αvβ8-integrins acted independently and are thus interchangeable. Both bind gH/gL with high affinity. The interaction profoundly affects the route of HSV entry and directs the virus to acidic endosomes. In the case of αvβ8, but not αvβ6-integrin, the portal of entry is located at lipid microdomains and requires dynamin 2. Thus, a major role of αvβ6- or αvβ8-integrin in HSV infection appears to be to function as gH/gL receptors and to promote virus endocytosis. We propose that placing the gH/gL activation under the integrin trigger point enables HSV to synchronize virion endocytosis with the cascade of glycoprotein activation that culminates in execution of fusion.