Tatiana R. Rosenstock
University of Coimbra
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tatiana R. Rosenstock.
Brazilian Journal of Medical and Biological Research | 2003
Soraya S. Smaili; Yi-Te Hsu; A C P Carvalho; Tatiana R. Rosenstock; J Sharpe; Richard J. Youle
Cellular Ca2+ signals are crucial in the control of most physiological processes, cell injury and programmed cell death through the regulation of a number of Ca2+-dependent enzymes such as phospholipases, proteases, and nucleases. Mitochondria along with the endoplasmic reticulum play pivotal roles in regulating intracellular Ca2+ content. Mitochondria are endowed with multiple Ca2+ transport mechanisms by which they take up and release Ca2+ across their inner membrane. During cellular Ca2+ overload, mitochondria take up cytosolic Ca2+, which in turn induces opening of permeability transition pores and disrupts the mitochondrial membrane potential (deltapsim). The collapse of deltapsim along with the release of cytochrome c from mitochondria is followed by the activation of caspases, nuclear fragmentation and cell death. Members of the Bcl-2 family are a group of proteins that play important roles in apoptosis regulation. Members of this family appear to differentially regulate intracellular Ca2+ level. Translocation of Bax, an apoptotic signaling protein, from the cytosol to the mitochondrial membrane is another step in this apoptosis signaling pathway.
Journal of Neurochemistry | 2004
Tatiana R. Rosenstock; A C P Carvalho; Aron Jurkiewicz; R. Frussa-Filho; Soraya S. Smaili
Intracellular calcium homeostasis is important for cell survival. However, increase in mitochondrial calcium (Ca2+m) induces opening of permeability transition pore (PTP), mitochondrial dysfunction and apoptosis. Since alterations of intracellular Ca2+ and reactive oxygen species (ROS) generation are involved in cell death, they might be involved in neurodegenerative processes such as Huntingtons disease (HD). HD is characterized by the inhibition of complex II of respiratory chain and increase in ROS production. In this report, we studied the correlation between the inhibitor of the complex II, 3‐nitropropionic acid (3NP), Ca2+ metabolism, apoptosis and behavioural alterations. We showed that 3NP (1 mm) is able to release Ca2+m, as neither Thapsigargin (TAP, 2 µm) nor free‐calcium medium affected its effect. PTP inhibitors and antioxidants inhibited this process, suggesting an increase in ROS generation and PTP opening. In addition, 3NP (0.1 mm) also induces apoptotic cell death. Behavioural changes in animals treated with 3NP (20 mg/kg/day for 4 days) were also attenuated by pre‐ and co‐treatment with vitamin E (VE, 20 mg/kg/day). Taken together, our results show that complex II inhibition could involve Ca2+m release, oxidative stress and cell death that may precede motor alterations in neurodegenerative processes such as HD.
Anais Da Academia Brasileira De Ciencias | 2009
Soraya S. Smaili; Hanako Hirata; Rodrigo Portes Ureshino; Priscila Totarelli Monteforte; Ana P. Morales; Mari L. Muler; Juliana Yoshie Terashima; Karen Oseki; Tatiana R. Rosenstock; Guiomar Silva Lopes; Claudia Bincoletto
Transient increase in cytosolic (Cac2+) and mitochondrial Ca2+ (Ca m2+) are essential elements in the control of many physiological processes. However, sustained increases in Ca c2+ and Ca m2+ may contribute to oxidative stress and cell death. Several events are related to the increase in Ca m2+, including regulation and activation of a number of Ca2+ dependent enzymes, such as phospholipases, proteases and nucleases. Mitochondria and endoplasmic reticulum (ER) play pivotal roles in the maintenance of intracellular Ca2+ homeostasis and regulation of cell death. Several lines of evidence have shown that, in the presence of some apoptotic stimuli, the activation of mitochondrial processes may lead to the release of cytochrome c followed by the activation of caspases, nuclear fragmentation and apoptotic cell death. The aim of this review was to show how changes in calcium signaling can be related to the apoptotic cell death induction. Calcium homeostasis was also shown to be an important mechanism involved in neurodegenerative and aging processes.
Current Drug Targets | 2010
Tatiana R. Rosenstock; Ana I. Duarte; A. Cristina Rego
Huntingtons disease (HD) is a genetic neurodegenerative disease selectively leading to striatal neurodegeneration, but also affecting the cortex and the hypothalamus. Although it is hard to predict the sequence of cell-damaging events occurring in HD patients, several pathological mechanisms have been proposed to explain HD selective neurodegeneration and disease symptomatology. Abnormalities in mitochondrial function and bioenergetics contribute to cell death and have been reported in HD-affected individuals, both in central and peripheral tissues. Moreover, the latter has been characterized in several HD models. Thus, this review describes the converging mechanisms that lead to mitochondrial and metabolic abnormalities in thoroughly studied in vivo and in vitro HD models, including excitotoxicity, altered calcium handling, changes in mitochondrial structure and dynamics and transcription deregulation, which may represent important disease therapeutic targets. Furthermore, the review describes the current evidences of metabolic disturbances in the brain of HD-affected humans and of peripheral metabolic and mitochondrial changes, weight loss and endocrine abnormalities operating in the whole HD body.
Cell Death & Differentiation | 2004
A C P Carvalho; J Sharpe; Tatiana R. Rosenstock; A F V Teles; A J Kowaltowski; Richard J. Youle; Soraya S. Smaili
AbstractIn the present study, we evaluated proapoptotic protein Bax on mitochondria and Ca2+ homeostasis in primary cultured astrocytes. We found that recombinant Bax (rBax, 10 and 100 ng/ml) induces a loss in mitochondrial membrane potential (ΔΨm). This effect might be related to the inhibition of respiratory rates and a partial release of cytochrome c, which may change mitochondrial morphology. The loss of ΔΨm and a selective permeabilization of mitochondrial membranes contribute to the release of Ca2+ from the mitochondria. This was inhibited by cyclosporin A (5 μM) and Ruthenium Red (1 μg/ml), indicating the involvement of mitochondrial Ca2+ transport mechanisms. Bax-induced mitochondrial Ca2+ release evokes Ca2+ waves and wave propagation between cells. Our results show that Bax induces mitochondrial alteration that affects Ca2+ homeostasis and signaling. These changes show that Ca2+ signals might be correlated with the proapoptotic activities of Bax.
Free Radical Biology and Medicine | 2014
Márcio Ribeiro; Tatiana R. Rosenstock; Ana Oliveira; Catarina R. Oliveira; A. Cristina Rego
Oxidative stress and mitochondrial dysfunction have been described in Huntingtons disease, a disorder caused by expression of mutant huntingtin (mHtt). IGF-1 was previously shown to protect HD cells, whereas insulin prevented neuronal oxidative stress. In this work we analyzed the role of insulin and IGF-1 in striatal cells derived from HD knock-in mice on mitochondrial production of reactive oxygen species (ROS) and related antioxidant and signaling pathways influencing mitochondrial function. Insulin and IGF-1 decreased mitochondrial ROS induced by mHtt and normalized mitochondrial SOD activity, without affecting intracellular glutathione levels. IGF-1 and insulin promoted Akt phosphorylation without changing the nuclear levels of phosphorylated Nrf2 or Nrf2/ARE activity. Insulin and IGF-1 treatment also decreased mitochondrial Drp1 phosphorylation, suggesting reduced mitochondrial fragmentation, and ameliorated mitochondrial function in HD cells in a PI-3K/Akt-dependent manner. This was accompanied by increased total and phosphorylated Akt, Tfam, and mitochondrial-encoded cytochrome c oxidase II, as well as Tom20 and Tom40 in mitochondria of insulin- and IGF-1-treated mutant striatal cells. Concomitantly, insulin/IGF-1-treated mutant cells showed reduced apoptotic features. Hence, insulin and IGF-1 improve mitochondrial function and reduce mitochondrial ROS caused by mHtt by activating the PI-3K/Akt signaling pathway, in a process independent of Nrf2 transcriptional activity, but involving enhanced mitochondrial levels of Akt and mitochondrial-encoded complex IV subunit.
Free Radical Biology and Medicine | 2012
Márcio Ribeiro; Tatiana R. Rosenstock; Teresa Cunha-Oliveira; Ildete L. Ferreira; Catarina R. Oliveira; A. Cristina Rego
Huntingtons disease (HD) is a CAG repeat disorder affecting the HD gene, which encodes for huntingtin (Htt) and is characterized by prominent cell death in the striatum. Oxidative stress was previously implicated in HD neurodegeneration, but the role of the major endogenous antioxidant system, the glutathione redox cycle, has been less studied following expression of full-length mutant Htt (FL-mHtt). Thus, in this work we analyzed the glutathione system in striatal cells derived from HD knock-in mice expressing mutant Htt versus wild-type cells. Mutant cells showed increased intracellular reactive oxygen species (ROS) and caspase-3 activity, which were significantly prevented following treatment with glutathione ethyl ester. Interestingly, mutant cells exhibited an increase in intracellular levels of both reduced and oxidized forms of glutathione, and enhanced activities of glutathione peroxidase (GPx) and glutathione reductase (GRed). Furthermore, glutathione-S-transferase (GST) and γ-glutamyl transpeptidase (γ-GT) activities were also increased in mutant cells. Nevertheless, glutamate-cysteine ligase (GCL) and glutathione synthetase (GS) activities and levels of GCL catalytic subunit were decreased in cells expressing FL-mHtt, highly suggesting decreased de novo synthesis of glutathione. Enhanced intracellular total glutathione, despite decreased synthesis, could be explained by decreased extracellular glutathione in mutant cells. This occurred concomitantly with decreased mRNA expression levels and activity of the multidrug resistance protein 1 (Mrp1), a transport protein that mediates cellular export of glutathione disulfide and glutathione conjugates. Additionally, inhibition of Mrp1 enhanced intracellular GSH in wild-type cells only. These data suggest that FL-mHtt affects the export of glutathione by decreasing the expression of Mrp1. Data further suggest that boosting of GSH-related antioxidant defense mechanisms induced by FL-mHtt is insufficient to counterbalance increased ROS formation and emergent apoptotic features in HD striatal cells.
Neuroscience Letters | 2008
A.V.F.F. Teles; Tatiana R. Rosenstock; C.S. Okuno; Guiomar Silva Lopes; C.R.A. Bertoncini; Soraya S. Smaili
Huntingtons disease (HD) is a hereditary dominant neurodegenerative disorder and the progression of the disease may be associated with apoptosis and altered expression of apoptotic proteins. The aim of this study was to investigate gene expression of bax and bcl-2 in tissues from R6/1 transgenic (TGN) mice of different ages (3, 6 and 9 months). The mRNA expression was investigated and related to apoptotic cells measured by TUNEL. Results showed a significant and progressive increase in bax levels in the cortex of TGN (from 10 to 33%) when compared to control (CT) (8 to 20%) mice with 3, 6 and 9-month-old. The increase in bax was correlated with the elevation in the number of apoptotic nuclei, especially in the cortex of 6 (10%) and 9 (18%)-month-old mice. Increase in bax expression might be related to an apoptotic induction which contributes to the HD progression.
Molecular Neurobiology | 2015
Luana Naia; I. Luísa Ferreira; Teresa Cunha-Oliveira; Ana I. Duarte; Márcio Ribeiro; Tatiana R. Rosenstock; Mário N. Laço; Maria J. Ribeiro; Catarina R. Oliveira; Frédéric Saudou; Sandrine Humbert; A. Cristina Rego
Huntington’s disease (HD) is an inherited neurodegenerative disease caused by a polyglutamine repeat expansion in the huntingtin protein. Mitochondrial dysfunction associated with energy failure plays an important role in this untreated pathology. In the present work, we used lymphoblasts obtained from HD patients or unaffected parentally related individuals to study the protective role of insulin-like growth factor 1 (IGF-1) versus insulin (at low nM) on signaling and metabolic and mitochondrial functions. Deregulation of intracellular signaling pathways linked to activation of insulin and IGF-1 receptors (IR,IGF-1R), Akt, and ERK was largely restored by IGF-1 and, at a less extent, by insulin in HD human lymphoblasts. Importantly, both neurotrophic factors stimulated huntingtin phosphorylation at Ser421 in HD cells. IGF-1 and insulin also rescued energy levels in HD peripheral cells, as evaluated by increased ATP and phosphocreatine, and decreased lactate levels. Moreover, IGF-1 effectively ameliorated O2 consumption and mitochondrial membrane potential (Δψm) in HD lymphoblasts, which occurred concomitantly with increased levels of cytochrome c. Indeed, constitutive phosphorylation of huntingtin was able to restore the Δψm in lymphoblasts expressing an abnormal expansion of polyglutamines. HD lymphoblasts further exhibited increased intracellular Ca2+ levels before and after exposure to hydrogen peroxide (H2O2), and decreased mitochondrial Ca2+ accumulation, being the later recovered by IGF-1 and insulin in HD lymphoblasts pre-exposed to H2O2. In summary, the data support an important role for IR/IGF-1R mediated activation of signaling pathways and improved mitochondrial and metabolic function in HD human lymphoblasts.
Neurochemistry International | 2011
Tatiana R. Rosenstock; Olga Martins de Brito; Vitoria Lombardi; Susana Ribeiro dos Louros; Márcio Ribeiro; Sandra Aparecida de Almeida; Ildete L. Ferreira; Catarina R. Oliveira; A. Cristina Rego
Huntingtons disease (HD) is a genetic neurodegenerative disorder characterized by striatal neurodegeneration, involving apoptosis. FK506, an inhibitor of calcineurin (or protein phosphatase 3, formerly known as protein phosphatase 2B), has shown neuroprotective effects in several cellular and animal models of HD. In the present study, we show the protective effects of FK506 in two striatal HD models, primary rat striatal neurons treated with 3-nitropropionic acid (3-NP) and immortalized striatal STHdh cells derived from HD knock-in mice expressing normal (STHdh(7/7)) or full-length mutant huntingtin (FL-mHtt) with 111 glutamines (STHdh(111/111)), under basal conditions and after exposure to 3-NP or staurosporine (STS). In rat striatal neurons, FK506 abolished 3-NP-induced increase in caspase-3 activation, DNA fragmentation/condensation and necrosis. Nevertheless, in STHdh(111/111) cells under basal conditions, FK506 did not prevent, in a significant manner, the release of cytochrome c and apoptosis inducing factor (AIF) from mitochondria, or alter Bax/Bcl-2 ratio, but significantly reverted caspase-3 activation. In STHdh(111/111) cells treated with 0.3mM 3-NP or 25 nM STS, linked to high necrosis, exposure to FK506 exerted no significant effects on caspase-3 activation. However, treatment of STHdh(111/111) cells exposed to 10nM STS with FK506 effectively prevented cell death by apoptosis and moderate necrosis. The results suggest that FK506 may be neuroprotective against apoptosis and necrosis under mild cell death stimulus in the presence of FLmHtt.