Tatiana von Landesberger
Technische Universität Darmstadt
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tatiana von Landesberger.
Information Visualization | 2009
Tobias Schreck; Jürgen Bernard; Tatiana von Landesberger; Jörn Kohlhammer
Visual-interactive cluster analysis provides valuable tools for effectively analyzing large and complex data sets. Owing to desirable properties and an inherent predisposition for visualization, the Kohonen Feature Map (or Self-Organizing Map or SOM) algorithm is among the most popular and widely used visual clustering techniques. However, the unsupervised nature of the algorithm may be disadvantageous in certain applications. Depending on initialization and data characteristics, cluster maps (cluster layouts) may emerge that do not comply with user preferences, expectations or the application context. Considering SOM-based analysis of trajectory data, we propose a comprehensive visual-interactive monitoring and control framework extending the basic SOM algorithm. The framework implements the general Visual Analytics idea to effectively combine automatic data analysis with human expert supervision. It provides simple, yet effective facilities for visually monitoring and interactively controlling the trajectory clustering process at arbitrary levels of detail. The approach allows the user to leverage existing domain knowledge and user preferences, arriving at improved cluster maps. We apply the framework on several trajectory clustering problems, demonstrating its potential in combining both unsupervised (machine) and supervised (human expert) processing, in producing appropriate cluster results.
IEEE Transactions on Visualization and Computer Graphics | 2016
Tatiana von Landesberger; Felix Brodkorb; Philipp Roskosch; Natalia V. Andrienko; Gennady L. Andrienko; Andreas Kerren
Learning more about people mobility is an important task for official decision makers and urban planners. Mobility data sets characterize the variation of the presence of people in different places over time as well as movements (or flows) of people between the places. The analysis of mobility data is challenging due to the need to analyze and compare spatial situations (i.e., presence and flows of people at certain time moments) and to gain an understanding of the spatio-temporal changes (variations of situations over time). Traditional flow visualizations usually fail due to massive clutter. Modern approaches offer limited support for investigating the complex variation of the movements over longer time periods. We propose a visual analytics methodology that solves these issues by combined spatial and temporal simplifications. We have developed a graph-based method, called MobilityGraphs, which reveals movement patterns that were occluded in flow maps. Our method enables the visual representation of the spatio-temporal variation of movements for long time series of spatial situations originally containing a large number of intersecting flows. The interactive system supports data exploration from various perspectives and at various levels of detail by interactive setting of clustering parameters. The feasibility our approach was tested on aggregated mobility data derived from a set of geolocated Twitter posts within the Greater London city area and mobile phone call data records in Abidjan, Ivory Coast. We could show that MobilityGraphs support the identification of regular daily and weekly movement patterns of resident population.
visual analytics science and technology | 2011
Sebastian Bremm; Tatiana von Landesberger; Martin Hess; Tobias Schreck; Philipp Weil; Kay Hamacherk
Traditionally, the visual analysis of hierarchies, respectively, trees, is conducted by focusing on one given hierarchy. However, in many research areas multiple, differing hierarchies need to be analyzed simultaneously in a comparative way - in particular to highlight differences between them, which sometimes can be subtle. A prominent example is the analysis of so-called phylogenetic trees in biology, reflecting hierarchical evolutionary relationships among a set of organisms. Typically, the analysis considers multiple phylogenetic trees, either to account for statistical significance or for differences in derivation of such evolutionary hierarchies; for example, based on different input data, such as the 16S ribosomal RNA and protein sequences of highly conserved enzymes. The simultaneous analysis of a collection of such trees leads to more insight into the evolutionary process. We introduce a novel visual analytics approach for the comparison of multiple hierarchies focusing on both global and local structures. A new tree comparison score has been elaborated for the identification of interesting patterns. We developed a set of linked hierarchy views showing the results of automatic tree comparison on various levels of details. This combined approach offers detailed assessment of local and global tree similarities. The approach was developed in close cooperation with experts from the evolutionary biology domain. We apply it to a phylogenetic data set on bacterial ancestry, demonstrating its application benefit.
visualization and data analysis | 2010
Tobias Schreck; Tatiana von Landesberger; Sebastian Bremm
The analysis of high-dimensional data is an important, yet inherently difficult problem. Projection techniques such as Principal Component Analysis, Multi-dimensional Scaling and Self-Organizing Map can be used to map high-dimensional data to 2D display space. However, projections typically incur a loss in information. Often, uncertainty exists regarding the precision of the projection as compared with its original data characteristics. While the output quality of these projection techniques can be discussed in terms of aggregate numeric error values, visualization is often helpful for better understanding the projection results. We address the visual assessment of projection precision by an approach integrating an appropriately designed projection precision measure directly into the projection visualization. To this end, a flexible projection precision measure is defined that allows the user to balance the degree of locality at which the measure is evaluated. Several visual mappings are designed for integrating the precision measure into the projection visualization at various levels of abstraction. The techniques are implemented in an interactive system, including methods supporting the user in finding appropriate settings of relevant parameters. We demonstrate the usefulness of the approach for visual analysis of classified and unclassified high-dimensional data sets. We show how our interactive precision quality visualization system helps to examine the preservation of original data properties in projected space.
eurographics | 2010
Tatiana von Landesberger; Arjan Kuijper; Tobias Schreck; Jörn Kohlhammer; Jarke J. van Wijk; Jean-Daniel Fekete; Dieter W. Fellner
The analysis of large graphs plays a prominent role in various fields of research and is relevant in many important application areas. Effective visual analysis of graphs requires appropriate visual presentations in combination with respective user interaction facilities and algorithmic graph analysis methods. How to design appropriate graph analysis systems depends on many factors, including the type of graph describing the data, the analytical task at hand, and the applicability of graph analysis methods. The most recent surveys of graph visualization and navigation techniques were presented by Herman et al. [HMM00] and Diaz [DPS02]. The first work surveyed the main techniques for visualization of hierarchies and graphs in general that had been introduced until 2000. The second work concentrated on graph layouts introduced until 2002. Recently, new techniques have been developed covering a broader range of graph types, such as time-varying graphs. Also, in accordance with ever growing amounts of graph-structured data becoming available, the inclusion of algorithmic graph analysis and interaction techniques becomes increasingly important. In this State-of-the-Art Report, we survey available techniques for the visual analysis of large graphs. Our review firstly considers graph visualization techniques according to the type of graphs supported. The visualization techniques form the basis for the presentation of interaction approaches suitable for visual graph exploration. As an important component of visual graph analysis, we discuss various graph algorithmic aspects useful for the different stages of the visual graph analysis process.
visual analytics science and technology | 2009
Tatiana von Landesberger; Melanie Görner; Tobias Schreck
In this paper, we present a system for the interactive visualization and exploration of graphs with many weakly connected components. The visualization of large graphs has recently received much research attention. However, specific systems for visual analysis of graph data sets consisting of many components are rare. In our approach, we rely on graph clustering using an extensive set of topology descriptors. Specifically, we use the Self-Organizing-Map algorithm in conjunction with a user-adaptable combination of graph features for clustering of graphs. It offers insight into the overall structure of the data set. The clustering output is presented in a grid containing clusters of the connected components of the input graph. Interactive feature selection and task-tailored data views allow the exploration of the whole graph space. The system provides also tools for assessment and display of cluster quality. We demonstrate the usefulness of our system by application to a shareholder network analysis problem based on a large real-world data set. While so far our approach is applied to weighted directed graphs only, it can be used for various graph types.
ieee vgtc conference on visualization | 2011
Sebastian Bremm; Tatiana von Landesberger; Jürgen Bernard; Tobias Schreck
Exploration and selection of data descriptors representing objects using a set of features are important components in many data analysis tasks. Usually, for a given dataset, an optimal data description does not exist, as the suitable data representation is strongly use case dependent. Many solutions for selecting a suitable data description have been proposed. In most instances, they require data labels and often are black box approaches. Non‐expert users have difficulties to comprehend the coherency of input, parameters, and output of these algorithms. Alternative approaches, interactive systems for visual feature selection, overburden the user with an overwhelming set of options and data views. Therefore, it is essential to offer the users a guidance in this analytical process. In this paper, we present a novel system for data description selection, which facilitates the users access to the data analysis process. As finding of suitable data description consists of several steps, we support the user with guidance. Our system combines automatic data analysis with interactive visualizations. By this, the system provides a recommendation for suitable data descriptor selections. It supports the comparison of data descriptors with differing dimensionality for unlabeled data. We propose specialized scores and interactive views for descriptor comparison. The visualization techniques are scatterplot‐based and grid‐based. For the latter case, we apply Self‐Organizing Maps as adaptive grids which are well suited for large multi‐dimensional data sets. As an example, we demonstrate the usability of our system on a real‐world biochemical application.
Journal of Location Based Services | 2010
Gennady L. Andrienko; Natalia V. Andrienko; Peter Bak; Sebastian Bremm; Daniel A. Keim; Tatiana von Landesberger; Christian Pölitz; Tobias Schreck
We suggest a visual analytics framework for the exploration and analysis of spatially and temporally referenced values of numeric attributes. The framework supports two complementary perspectives on spatio-temporal data: as a temporal sequence of spatial distributions of attribute values (called spatial situations) and as a set of spatially referenced time series of attribute values representing local temporal variations. To handle a large amount of data, we use the self-organising map (SOM) method, which groups objects and arranges them according to similarity of relevant data features. We apply the SOM approach to spatial situations and to local temporal variations and obtain two types of SOM outcomes, called space-in-time SOM and time-in-space SOM, respectively. The examination and interpretation of both types of SOM outcomes are supported by appropriate visualisation and interaction techniques. This article describes the use of the framework by an example scenario of data analysis. We also discuss how the framework can be extended from supporting explorative analysis to building predictive models of the spatio-temporal variation of attribute values. We apply our approach to phone call data showing its usefulness in real-world analytic scenarios.
Expert Systems With Applications | 2013
Tatiana von Landesberger; Sebastian Bremm; Matthias Kirschner; Stefan Wesarg; Arjan Kuijper
Segmentation of medical images is a prerequisite in clinical practice. Many segmentation algorithms use statistical shape models. Due to the lack of tools providing prior information on the data, standard models are frequently used. However, they do not necessarily describe the data in an optimal way. Model-based segmentation can be supported by Visual Analytics tools, which give the user a deeper insight into the correspondence between data and model result. Combining both approaches, better models for segmentation of organs in medical images are created. In this work, we identify the main tasks and problems in model-based image segmentation. As a proof of concept, we show that already small visual-interactive extensions can be very beneficial. Based on these results, we present research challenges for Visual Analytics in this area.
Tsinghua Science & Technology | 2012
Andrada Tatu; Leishi Zhang; Enrico Bertini; Tobias Schreck; Daniel A. Keim; Sebastian Bremm; Tatiana von Landesberger
Subspace clustering addresses an important problem in clustering multi-dimensional data. In sparse multi-dimensional data, many dimensions are irrelevant and obscure the cluster boundaries. Subspace clustering helps by mining the clusters present in only locally relevant subsets of dimensions. However, understanding the result of subspace clustering by analysts is not trivial. In addition to the grouping information, relevant sets of dimensions and overlaps between groups, both in terms of dimensions and records, need to be analyzed. We introduce a visual subspace cluster analysis system called ClustNails. It integrates several novel visualization techniques with various user interaction facilities to support navigating and interpreting the result of subspace clustering. We demonstrate the effectiveness of the proposed system by applying it to the analysis of real world data and comparing it with existing visual subspace cluster analysis systems.