Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tatsuya J. Arai is active.

Publication


Featured researches published by Tatsuya J. Arai.


Journal of Applied Physiology | 2010

Vertical distribution of specific ventilation in normal supine humans measured by oxygen-enhanced proton MRI.

Rui Carlos Sá; Matthew V. Cronin; A. Cortney Henderson; Sebastiaan Holverda; Rebecca J. Theilmann; Tatsuya J. Arai; David J. Dubowitz; Susan R. Hopkins; Richard B. Buxton; G. Kim Prisk

Specific ventilation (SV) is the ratio of fresh gas entering a lung region divided by its end-expiratory volume. To quantify the vertical (gravitationally dependent) gradient of SV in eight healthy supine subjects, we implemented a novel proton magnetic resonance imaging (MRI) method. Oxygen is used as a contrast agent, which in solution changes the longitudinal relaxation time (T1) in lung tissue. Thus alterations in the MR signal resulting from the regional rise in O(2) concentration following a sudden change in inspired O(2) reflect SV-lung units with higher SV reach a new equilibrium faster than those with lower SV. We acquired T1-weighted inversion recovery images of a sagittal slice of the supine right lung with a 1.5-T MRI system. Images were voluntarily respiratory gated at functional residual capacity; 20 images were acquired with the subject breathing air and 20 breathing 100% O(2), and this cycle was repeated five times. Expired tidal volume was measured simultaneously. The SV maps presented an average spatial fractal dimension of 1.13 ± 0.03. There was a vertical gradient in SV of 0.029 ± 0.012 cm(-1), with SV being highest in the dependent lung. Dividing the lung vertically into thirds showed a statistically significant difference in SV, with SV of 0.42 ± 0.14 (mean ± SD), 0.29 ± 0.10, and 0.24 ± 0.08 in the dependent, intermediate, and nondependent regions, respectively (all differences, P < 0.05). This vertical gradient in SV is consistent with the known gravitationally induced deformation of the lung resulting in greater lung expansion in the dependent lung with inspiration. This SV imaging technique can be used to quantify regional SV in the lung with proton MRI.


Journal of Magnetic Resonance Imaging | 2009

Quantitative MRI measurement of lung density must account for the change in T(2) (*) with lung inflation.

Rebecca J. Theilmann; Tatsuya J. Arai; Ahsan Samiee; David J. Dubowitz; Susan R. Hopkins; Richard B. Buxton; G. Kim Prisk

To evaluate lung water density at three different levels of lung inflation in normal lungs using a fast gradient echo sequence developed for rapid imaging.


Journal of Applied Physiology | 2009

Hypoxic pulmonary vasoconstriction does not contribute to pulmonary blood flow heterogeneity in normoxia in normal supine humans

Tatsuya J. Arai; A. C. Henderson; David J. Dubowitz; David L. Levin; Paul J. Friedman; Richard B. Buxton; G. K. Prisk; Susan R. Hopkins

We hypothesized that some of the heterogeneity of pulmonary blood flow present in the normal human lung in normoxia is due to hypoxic pulmonary vasoconstriction (HPV). If so, mild hyperoxia would decrease the heterogeneity of pulmonary perfusion, whereas it would be increased by mild hypoxia. To test this, six healthy nonsmoking subjects underwent magnetic resonance imaging (MRI) during 20 min of breathing different oxygen concentrations through a face mask [normoxia, inspired O(2) fraction (Fi(O(2))) = 0.21; hypoxia, Fi(O(2)) = 0.125; hyperoxia, Fi(O(2)) = 0.30] in balanced order. Data were acquired on a 1.5-T MRI scanner during a breath hold at functional residual capacity from both coronal and sagittal slices in the right lung. Arterial spin labeling was used to quantify the spatial distribution of pulmonary blood flow in milliliters per minute per cubic centimeter and fast low-angle shot to quantify the regional proton density, allowing perfusion to be expressed as density-normalized perfusion in milliliters per minute per gram. Neither mean proton density [hypoxia, 0.46(0.18) g water/cm(3); normoxia, 0.47(0.18) g water/cm(3); hyperoxia, 0.48(0.17) g water/cm(3); P = 0.28] nor mean density-normalized perfusion [hypoxia, 4.89(2.13) ml x min(-1) x g(-1); normoxia, 4.94(1.88) ml x min(-1) x g(-1); hyperoxia, 5.32(1.83) ml x min(-1) x g(-1); P = 0.72] were significantly different between conditions in either imaging plane. Similarly, perfusion heterogeneity as measured by relative dispersion [hypoxia, 0.74(0.16); normoxia, 0.74(0.10); hyperoxia, 0.76(0.18); P = 0.97], fractal dimension [hypoxia, 1.21(0.04); normoxia, 1.19(0.03); hyperoxia, 1.20(0.04); P = 0.07], log normal shape parameter [hypoxia, 0.62(0.11); normoxia, 0.72(0.11); hyperoxia, 0.70(0.13); P = 0.07], and geometric standard deviation [hypoxia, 1.88(0.20); normoxia, 2.07(0.24); hyperoxia, 2.02(0.28); P = 0.11] was also not different. We conclude that HPV does not affect pulmonary perfusion heterogeneity in normoxia in the normal supine human lung.


Journal of Applied Physiology | 2009

Pulmonary perfusion heterogeneity is increased by sustained, heavy exercise in humans

K. J. Burnham; Tatsuya J. Arai; David J. Dubowitz; A. C. Henderson; Sebastiaan Holverda; Richard B. Buxton; G. K. Prisk; Susan R. Hopkins

Exercise presents a considerable stress to the pulmonary system and ventilation-perfusion (Va/Q) heterogeneity increases with exercise, affecting the efficiency of gas exchange. In particular, prolonged heavy exercise and maximal exercise are known to increase Va/Q heterogeneity and these changes persist into recovery. We hypothesized that the spatial heterogeneity of pulmonary perfusion would be similarly elevated after prolonged exercise. To test this, athletic subjects (n = 6, Vo(2max) = 61 ml. kg(-1).min(-1)) with exercising Va/Q heterogeneity previously characterized by the multiple inert gas elimination technique (MIGET), performed 45 min of cycle exercise at approximately 70% Vo(2max). MRI arterial spin labeling measures of pulmonary perfusion were acquired pre- and postexercise (at 20, 40, 60 min post) to quantify the spatial distribution in isogravitational (coronal) and gravitationally dependent (sagittal) planes. Regional proton density measurements allowed perfusion to be normalized for density and quantified in milliliters per minute per gram. Mean lung density did not change significantly in either plane after exercise (P = 0.19). Density-normalized perfusion increased in the sagittal plane postexercise (P =or <0.01) but heterogeneity did not (all P >or= 0.18), likely because of perfusion redistribution and vascular recruitment. Density-normalized perfusion was unchanged in the coronal plane postexercise (P = 0.66), however, perfusion heterogeneity was significantly increased as measured by the relative dispersion [RD, pre 0.62(0.07), post 0.82(0.21), P < 0.0001] and geometric standard deviation [GSD, pre 1.74(0.14), post 2.30(0.56), P < 0.005]. These changes in heterogeneity were related to the exercise-induced changes of the log standard deviation of the ventilation distribution, an MIGET index of Va/Q heterogeneity (RD R(2) = 0.68, P < 0.05, GSD, R(2) = 0.55, P = 0.09). These data are consistent with but not proof of interstitial pulmonary edema as the mechanism underlying exercise-induced increases in both spatial perfusion heterogeneity and Va/Q heterogeneity.


The Journal of Physiology | 2007

Effect of acetazolamide on pulmonary and muscle gas exchange during normoxic and hypoxic exercise

Amy M. Jonk; Irene P. van den Berg; I. Mark Olfert; D. Walter Wray; Tatsuya J. Arai; Susan R. Hopkins; Peter D. Wagner

Acetazolamide (ACZ) is used to prevent acute mountain sickness at altitude. Because it could affect O2 transport in several different and potentially conflicting ways, we examined its effects on pulmonary and muscle gas exchange and acid–base status during cycle exercise at ∼30, 50 and 90% in normoxia (F  IO 2 = 0.2093) and acute hypoxia (F  IO 2 = 0.125). In a double‐blind, order‐balanced, crossover design, six healthy, trained men (normoxic = 59 ml kg−1 min−1) exercised at both F  IO 2 values after ACZ (3 doses of 250 mg, 8 h apart) and placebo. One week later this protocol was repeated using the other drug (placebo or ACZ). We measured cardiac output , leg blood flow (LBF), and muscle and pulmonary gas exchange, the latter using the multiple inert gas elimination technique. ACZ did not significantly affect , , LBF or muscle gas exchange. As expected, ACZ led to lower arterial and venous blood [HCO3−], pH and lactate levels (P < 0.05), and increased ventilation (P < 0.05). In both normoxia and hypoxia, ACZ resulted in higher arterial PO2 and saturation and a lower alveolar–arterial PO2 difference (AaDO2) due to both less mismatch and less diffusion limitation (P < 0.05). In summary, ACZ improved arterial oxygenation during exercise, due to both greater ventilation and more efficient pulmonary gas exchange. However, muscle gas exchange was unaffected.


Journal of Applied Physiology | 2010

Rapid intravenous infusion of 20 ml/kg saline does not impair resting pulmonary gas exchange in the healthy human lung

G. Kim Prisk; I. Mark Olfert; Tatsuya J. Arai; Peter D. Wagner; Susan R. Hopkins

Rapid infusion of intravenous saline, a model of pulmonary interstitial edema, alters the distribution of pulmonary perfusion, raises pulmonary capillary blood volume, and increases bronchial wall thickness in humans. We hypothesized that infusion would disrupt pulmonary gas exchange by increasing ventilation/perfusion ((.)VA/(.)Q) inequality as opposed to a diffusive impairment in O2 exchange. Seven males (26 +/- 3 yr; FEV1: 110 +/- 16% predicted.) performed spirometry and had (.)VA/(.)Q mismatch measured using the multiple inert gas elimination technique, before and after 20 ml/kg iv of normal saline delivered in approximately 30 min. Infusion increased thoracic fluid content from transthoracic impedance by 12% (P < 0.0001) and left FVC unchanged but reduced expiratory flows (FEF(25-75) falling from 5.1 +/- 0.4 to 4.2 +/- 0.4 l/s, P < 0.05). However, (.)VA/(.)Q mismatch as measured by the log standard deviation of the ventilation (LogSD(.)V) and perfusion (LogSD(.)Q) distributions remained unchanged; LogSD(.)V: 0.40 +/- 0.03 pre, 0.38 +/- 0.04 post, NS; LogSD(.)Q: 0.38 +/- 0.03 pre, 0.37 +/- 0.03 post, NS. There was no significant change in arterial PO2 (99 +/- 2 pre, 99 +/- 3 mmHg post, NS) but arterial PCO2 was decreased (38.7 +/- 0.6 pre, 36.8 +/- 1.2 mmHg post, P < 0.05). Thus, infusion compressed small airways and caused a mild degree of hyperventilation. There was no evidence for a diffusive limitation to O2 exchange, with the measured-predicted alveolar-arterial oxygen partial pressure difference being unaltered by infusion at FIO2 = 0.125 (4.3 +/- 1.0 pre, 5.2 +/- 1.0 post, NS). After infusion, the fraction of perfusion going to areas with (.)VA/(.)Q < 1 was increased when a subject breathed a hyperoxic gas mixture [0.72 +/- 0.06 (FIO2 = 0.21), 0.80 +/- 0.06 (FIO2 = 0.30), P < 0.05] with similar effects on ventilation in the face of unchanged (.)VA and (.)Q. These results suggest active control of blood flow to regions of decreased ventilation during air breathing, thus minimizing the gas exchange consequences.


The Journal of Physiology | 2010

Lung volume does not alter the distribution of pulmonary perfusion in dependent lung in supine humans

Susan R. Hopkins; Tatsuya J. Arai; A. Cortney Henderson; David L. Levin; Richard B. Buxton; G. Kim Prisk

There is a gravitational influence on pulmonary perfusion, including in the most dependent lung, where perfusion is reduced, termed Zone 4. Studies using xenon‐133 show Zone 4 behaviour, present in the dependent 4 cm at total lung capacity (TLC), affects the dependent 11 cm at functional residual capacity (FRC) and almost all the lung at residual volume (RV). These differences were ascribed to increased resistance in extra‐alveolar vessels at low lung volumes although other mechanisms have been proposed. To further evaluate the behaviour of perfusion in dependent lung using a technique that directly measures pulmonary perfusion and corrects for tissue distribution by measuring regional proton density, seven healthy subjects (age = 38 ± 6 years, FEV1= 104 ± 7% predicted) underwent magnetic resonance imaging in supine posture. Data were acquired in the right lung during breath‐holds at RV, FRC and TLC. Arterial spin labelling quantified regional pulmonary perfusion, which was normalized for regional proton density measured using a fast low‐angle shot technique. The height of the onset of Zone 4 behaviour was not different between lung volumes (P= 0.23). There were no significant differences in perfusion (expressed as ml min−1 g−1) between lung volumes in the gravitationally intermediate (RV = 8.9 ± 3.1, FRC = 8.1 ± 2.9, TLC = 7.4 ± 3.6; P= 0.26) and dependent lung (RV = 6.6 ± 2.4, FRC = 6.1 ± 2.1, TLC = 6.4 ± 2.6; P= 0.51). However, at TLC perfusion was significantly lower in non‐dependent lung than at FRC or RV (3.6 ± 3.3, 7.7 ± 1.5, 7.9 ± 2.0, respectively; P < 0.001). These data suggest that the mechanism of the reduction in perfusion in dependent lung is unlikely to be a result of lung volume related increases in resistance in extra‐alveolar vessels. In supine posture, the gravitational influence on perfusion is remarkably similar over most of the lung, irrespective of lung volume.


Journal of Magnetic Resonance Imaging | 2011

Measuring lung water: ex vivo validation of multi-image gradient echo MRI.

Sebastiaan Holverda; Rebecca J. Theilmann; Rui Carlos Sá; Tatsuya J. Arai; Evan T. Hall; David J. Dubowitz; G. Kim Prisk; Susan R. Hopkins

To validate a fast gradient echo sequence for rapid (9 s) quantitative imaging of lung water.


Journal of Visualized Experiments | 2011

Magnetic Resonance Imaging Quantification of Pulmonary Perfusion using Calibrated Arterial Spin Labeling

Tatsuya J. Arai; G. Kim Prisk; Sebastiaan Holverda; Rui Carlos Sá; Rebecca J. Theilmann; A. Cortney Henderson; Matthew V. Cronin; Richard B. Buxton; Susan R. Hopkins

UNLABELLED This demonstrates a MR imaging method to measure the spatial distribution of pulmonary blood flow in healthy subjects during normoxia (inspired O(2), fraction (F(I)O(2)) = 0.21) hypoxia (F(I)O(2) = 0.125), and hyperoxia (F(I)O(2) = 1.00). In addition, the physiological responses of the subject are monitored in the MR scan environment. MR images were obtained on a 1.5 T GE MRI scanner during a breath hold from a sagittal slice in the right lung at functional residual capacity. An arterial spin labeling sequence (ASL-FAIRER) was used to measure the spatial distribution of pulmonary blood flow and a multi-echo fast gradient echo (mGRE) sequence was used to quantify the regional proton (i.e. H(2)O) density, allowing the quantification of density-normalized perfusion for each voxel (milliliters blood per minute per gram lung tissue). With a pneumatic switching valve and facemask equipped with a 2-way non-rebreathing valve, different oxygen concentrations were introduced to the subject in the MR scanner through the inspired gas tubing. A metabolic cart collected expiratory gas via expiratory tubing. Mixed expiratory O(2) and CO(2) concentrations, oxygen consumption, carbon dioxide production, respiratory exchange ratio, respiratory frequency and tidal volume were measured. Heart rate and oxygen saturation were monitored using pulse-oximetry. Data obtained from a normal subject showed that, as expected, heart rate was higher in hypoxia (60 bpm) than during normoxia (51) or hyperoxia (50) and the arterial oxygen saturation (SpO(2)) was reduced during hypoxia to 86%. Mean ventilation was 8.31 L/min BTPS during hypoxia, 7.04 L/min during normoxia, and 6.64 L/min during hyperoxia. Tidal volume was 0.76 L during hypoxia, 0.69 L during normoxia, and 0.67 L during hyperoxia. Representative quantified ASL data showed that the mean density normalized perfusion was 8.86 ml/min/g during hypoxia, 8.26 ml/min/g during normoxia and 8.46 ml/min/g during hyperoxia, respectively. In this subject, the relative dispersion, an index of global heterogeneity, was increased in hypoxia (1.07 during hypoxia, 0.85 during normoxia, and 0.87 during hyperoxia) while the fractal dimension (Ds), another index of heterogeneity reflecting vascular branching structure, was unchanged (1.24 during hypoxia, 1.26 during normoxia, and 1.26 during hyperoxia). Overview. This protocol will demonstrate the acquisition of data to measure the distribution of pulmonary perfusion noninvasively under conditions of normoxia, hypoxia, and hyperoxia using a magnetic resonance imaging technique known as arterial spin labeling (ASL). RATIONALE Measurement of pulmonary blood flow and lung proton density using MR technique offers high spatial resolution images which can be quantified and the ability to perform repeated measurements under several different physiological conditions. In human studies, PET, SPECT, and CT are commonly used as the alternative techniques. However, these techniques involve exposure to ionizing radiation, and thus are not suitable for repeated measurements in human subjects.


Journal of Applied Physiology | 2013

The heterogeneity of regional specific ventilation is unchanged following heavy exercise in athletes

Vince Tedjasaputra; Rui Carlos Sá; Tatsuya J. Arai; Sebastiaan Holverda; Rebecca J. Theilmann; William T. Chen; Peter D. Wagner; Christopher K. Davis; G. Kim Prisk; Susan R. Hopkins

Heavy exercise increases ventilation-perfusion mismatch and decreases pulmonary gas exchange efficiency. Previous work using magnetic resonance imaging (MRI) arterial spin labeling in athletes has shown that, after 45 min of heavy exercise, the spatial heterogeneity of pulmonary blood flow was increased in recovery. We hypothesized that the heterogeneity of regional specific ventilation (SV, the local tidal volume over functional residual capacity ratio) would also be increased following sustained exercise, consistent with the previously documented changes in blood flow heterogeneity. Trained subjects (n = 6, maximal O2 consumption = 61 ± 7 ml·kg(-1)·min(-1)) cycled 45 min at their individually determined ventilatory threshold. Oxygen-enhanced MRI was used to quantify SV in a sagittal slice of the right lung in supine posture pre- (preexercise) and 15- and 60-min postexercise. Arterial spin labeling was used to measure pulmonary blood flow in the same slice bracketing the SV measures. Heterogeneity of SV and blood flow were quantified by relative dispersion (RD = SD/mean). The alveolar-arterial oxygen difference was increased during exercise, 23.3 ± 5.3 Torr, compared with rest, 6.3 ± 3.7 Torr, indicating a gas exchange impairment during exercise. No significant change in RD of SV was seen after exercise: preexercise 0.78 ± 0.15, 15 min postexercise 0.81 ± 0.13, 60 min postexercise 0.78 ± 0.08 (P = 0.5). The RD of blood flow increased significantly postexercise: preexercise 1.00 ± 0.12, 15 min postexercise 1.15 ± 0.10, 45 min postexercise 1.10 ± 0.10, 60 min postexercise 1.19 ± 0.11, 90 min postexercise 1.11 ± 0.12 (P < 0.005). The lack of a significant change in RD of SV postexercise, despite an increase in the RD of blood flow, suggests that airways may be less susceptible to the effects of exercise than blood vessels.

Collaboration


Dive into the Tatsuya J. Arai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Kim Prisk

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rui Carlos Sá

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge