Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tatsuya Tsurumi is active.

Publication


Featured researches published by Tatsuya Tsurumi.


Journal of Biological Chemistry | 2005

Activation of Ataxia Telangiectasia-mutated DNA Damage Checkpoint Signal Transduction Elicited by Herpes Simplex Virus Infection

Noriko Shirata; Ayumi Kudoh; Tohru Daikoku; Yasutoshi Tatsumi; Masatoshi Fujita; Tohru Kiyono; Yutaka Sugaya; Hiroki Isomura; Kanji Ishizaki; Tatsuya Tsurumi

Eukaryotic cells are equipped with machinery to monitor and repair damaged DNA. Herpes simplex virus (HSV) DNA replication occurs at discrete sites in nuclei, the replication compartment, where viral replication proteins cluster and synthesize a large amount of viral DNA. In the present study, HSV infection was found to elicit a cellular DNA damage response, with activation of the ataxia-telangiectasia-mutated (ATM) signal transduction pathway, as observed by autophosphorylation of ATM and phosphorylation of multiple downstream targets including Nbs1, Chk2, and p53, while infection with a UV-inactivated virus or with a replication-defective virus did not. Activated ATM and the DNA damage sensor MRN complex composed of Mre11, Rad50, and Nbs1 were recruited and retained at sites of viral DNA replication, probably recognizing newly synthesized viral DNAs as abnormal DNA structures. These events were not observed in ATM-deficient cells, indicating ATM dependence. In Nbs1-deficient cells, HSV infection induced an ATM DNA damage response that was delayed, suggesting a functional MRN complex requirement for efficient ATM activation. However, ATM silencing had no effect on viral replication in 293T cells. Our data open up an interesting question of how the virus is able to complete its replication, although host cells activate ATM checkpoint signaling in response to the HSV infection.


Journal of Biological Chemistry | 1999

Cell Cycle Regulation of Human CDC6 Protein INTRACELLULAR LOCALIZATION, INTERACTION WITH THE HUMAN MCM COMPLEX, AND CDC2 KINASE-MEDIATED HYPERPHOSPHORYLATION

Masatoshi Fujita; Chieko Yamada; Hidemasa Goto; Naoaki Yokoyama; Kiyotaka Kuzushima; Masaki Inagaki; Tatsuya Tsurumi

The binding of mammalian MCM complexes to chromatin is cell cycle-regulated and under CDC2 kinase negative control. Here, we investigated the properties of mammalian CDC6 protein, a candidate regulator of MCM. The levels of CDC6 were relatively constant during the HeLa cell cycle. In asynchronous cells, CDC6 was mainly detected in the nuclei with immunostaining, but some CDC6 was not extractable with nonionic detergent. In contrast to the chromatin-bound MCM, this fraction of CDC6 was resistant to DNase I treatment, suggesting that it binds to the detergent- and nuclease-resistant nuclear structure. In S phase cells, CDC6 became detectable in the cytoplasm with immunostaining; however, the level of the bound CDC6 was unchanged. In G2/M phase cells, the level of the bound CDC6 was still maintained, which was hyperphosphorylated by CDC2 kinase. These data suggest that some CDC6 protein is associated with the specific nuclear structure throughout the cell cycle and that major binding sites on chromatin differ between MCM and CDC6. However, co-immunoprecipitation assays with chemical cross-linking indicated that a small part of the chromatin-bound MCM is present close to the bound CDC6.


Journal of Virology | 2003

Reactivation of Lytic Replication from B Cells Latently Infected with Epstein-Barr Virus Occurs with High S-Phase Cyclin-Dependent Kinase Activity while Inhibiting Cellular DNA Replication

Ayumi Kudoh; Masatoshi Fujita; Tohru Kiyono; Kiyotaka Kuzushima; Yutaka Sugaya; Shunji Izuta; Yukihiro Nishiyama; Tatsuya Tsurumi

ABSTRACT Productive infection and replication of herpesviruses usually occurs in growth-arrested cells, but there has been no direct evidence in the case of Epstein-Barr virus (EBV), since an efficient lytic replication system without external stimuli does not exist for the virus. Expression of the EBV lytic-switch transactivator BZLF1 protein in EBV-negative epithelial tumor cell lines, however, is known to arrest the cell cycle in G0/G1 by induction of the tumor suppressor protein p53 and the cyclin-dependent kinase (CDK) inhibitors p21WAF-1/CIP-1 and p27KIP-1, followed by the accumulation of a hypophosphorylated form of the Rb protein. In order to determine the effect of the onset of lytic viral replication on cellular events in latently EBV-infected B LCLs, a tightly controlled induction system of the EBV lytic-replication program by inducible BZLF1 protein expression was established in B95-8 cells. The induction of lytic replication completely arrested cell cycle progression and cellular DNA replication. Surprisingly, the levels of p53, p21WAF-1/CIP-1, and p27KIP-1 were constant before and after induction of the lytic program, indicating that the cell cycle arrest induced by the lytic program is not mediated through p53 and the CDK inhibitors. Furthermore, although cellular DNA replication was blocked, elevation of cyclin E/A expression and accumulation of hyperphosphorylated forms of Rb protein were observed, a post-G1/S phase characteristic of cells. Thus, while the EBV lytic program promoted specific cell cycle-associated activities involved in the progression from G1 to S phase, it inhibited cellular DNA synthesis. Such cellular conditions appear to especially favor viral lytic replication.


PLOS Pathogens | 2009

Degradation of Phosphorylated p53 by Viral Protein-ECS E3 Ligase Complex

Yoshitaka Sato; Takumi Kamura; Noriko Shirata; Takayuki Murata; Ayumi Kudoh; Satoko Iwahori; Sanae Nakayama; Hiroki Isomura; Yukihiro Nishiyama; Tatsuya Tsurumi

p53-signaling is modulated by viruses to establish a host cellular environment advantageous for their propagation. The Epstein-Barr virus (EBV) lytic program induces phosphorylation of p53, which prevents interaction with MDM2. Here, we show that induction of EBV lytic program leads to degradation of p53 via an ubiquitin-proteasome pathway independent of MDM2. The BZLF1 protein directly functions as an adaptor component of the ECS (Elongin B/C-Cul2/5-SOCS-box protein) ubiquitin ligase complex targeting p53 for degradation. Intringuingly, C-terminal phosphorylation of p53 resulting from activated DNA damage response by viral lytic replication enhances its binding to BZLF1 protein. Purified BZLF1 protein-associated ECS could be shown to catalyze ubiquitination of phospho-mimetic p53 more efficiently than the wild-type in vitro. The compensation of p53 at middle and late stages of the lytic infection inhibits viral DNA replication and production during lytic infection, suggesting that the degradation of p53 is required for efficient viral propagation. Taken together, these findings demonstrate a role for the BZLF1 protein-associated ECS ligase complex in regulation of p53 phosphorylated by activated DNA damage signaling during viral lytic infection.


Journal of Virology | 2005

Architecture of Replication Compartments Formed during Epstein-Barr Virus Lytic Replication

Tohru Daikoku; Ayumi Kudoh; Masatoshi Fujita; Yutaka Sugaya; Hiroki Isomura; Noriko Shirata; Tatsuya Tsurumi

ABSTRACT Epstein-Barr virus (EBV) productive DNA replication occurs at discrete sites, called replication compartments, in nuclei. In this study we performed comprehensive analyses of the architecture of the replication compartments. The BZLF1 oriLyt binding proteins showed a fine, diffuse pattern of distribution throughout the nuclei at immediate-early stages of induction and then became associated with the replicating EBV genome in the replication compartments during lytic infection. The BMRF1 polymerase (Pol) processivity factor showed a homogenous, not dot-like, distribution in the replication compartments, which completely coincided with the newly synthesized viral DNA. Inhibition of viral DNA replication with phosphonoacetic acid, a viral DNA Pol inhibitor, eliminated the DNA-bound form of the BMRF1 protein, although the protein was sufficiently expressed in the cells. These observations together with the findings that almost all abundantly expressed BMRF1 proteins existed in the DNA-bound form suggest that the BMRF1 proteins not only act at viral replication forks as Pol processive factors but also widely distribute on newly replicated EBV genomic DNA. In contrast, the BALF5 Pol catalytic protein, the BALF2 single-stranded-DNA binding protein, and the BBLF2/3 protein, a component of the helicase-primase complex, were colocalized as distinct dots distributed within replication compartments, representing viral replication factories. Whereas cellular replication factories are constructed based on nonchromatin nuclear structures and nuclear matrix, viral replication factories were easily solubilized by DNase I treatment. Thus, compared with cellular DNA replication, EBV lytic DNA replication factories would be simpler so that construction of the replication domain would be more relaxed.


Journal of Virology | 2009

Homologous Recombinational Repair Factors Are Recruited and Loaded onto the Viral DNA Genome in Epstein-Barr Virus Replication Compartments

Ayumi Kudoh; Satoko Iwahori; Yoshitaka Sato; Sanae Nakayama; Hiroki Isomura; Takayuki Murata; Tatsuya Tsurumi

ABSTRACT Homologous recombination is an important biological process that facilitates genome rearrangement and repair of DNA double-strand breaks (DSBs). The induction of Epstein-Barr virus (EBV) lytic replication induces ataxia telangiectasia-mutated (ATM)-dependent DNA damage checkpoint signaling, leading to the clustering of phosphorylated ATM and Mre11/Rad50/Nbs1 (MRN) complexes to sites of viral genome synthesis in nuclei. Here we report that homologous recombinational repair (HRR) factors such as replication protein A (RPA), Rad51, and Rad52 as well as MRN complexes are recruited and loaded onto the newly synthesized viral genome in replication compartments. The 32-kDa subunit of RPA is extensively phosphorylated at sites in accordance with those with ATM. The hyperphosphorylation of RPA32 causes a change in RPA conformation, resulting in a switch from the catalysis of DNA replication to the participation in DNA repair. The levels of Rad51 and phosphorylated RPA were found to increase with the progression of viral productive replication, while that of Rad52 proved constant. Furthermore, biochemical fractionation revealed increases in levels of DNA-bound forms of these HRRs. Bromodeoxyuridine-labeled chromatin immunoprecipitation and PCR analyses confirmed the loading of RPA, Rad 51, Rad52, and Mre11 onto newly synthesized viral DNA, and terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling analysis demonstrated DSBs in the EBV replication compartments. HRR factors might be recruited to repair DSBs on the viral genome in viral replication compartments. RNA interference knockdown of RPA32 and Rad51 prevented viral DNA synthesis remarkably, suggesting that homologous recombination and/or repair of viral DNA genome might occur, coupled with DNA replication to facilitate viral genome synthesis.


Journal of Virology | 2004

Inhibition of S-phase cyclin-dependent kinase activity blocks expression of Epstein-Barr virus immediate-early and early genes, preventing viral lytic replication.

Ayumi Kudoh; Tohru Daikoku; Yutaka Sugaya; Hiroki Isomura; Masatoshi Fujita; Tohru Kiyono; Yukihiro Nishiyama; Tatsuya Tsurumi

ABSTRACT The induction of lytic replication of the Epstein-Barr virus (EBV) completely arrests cell cycle progression, in spite of elevation of S-phase cyclin-dependent kinase (CDK) activity, thereby causing accumulation of hyperphosphorylated forms of retinoblastoma (Rb) protein (A. Kudoh, M. Fujita, T. Kiyono, K. Kuzushima, Y. Sugaya, S. Izuta, Y. Nishiyama, and T. Tsurumi, J. Virol. 77:851-861, 2003). Thus, the EBV lytic program appears to promote specific cell cycle-associated activity involved in the progression from G1 to S phase. We have proposed that this provides a cellular environment that is advantageous for EBV productive infection. Purvalanol A and roscovitine, inhibitors of S-phase CDKs, blocked the viral lytic replication when cells were treated at the early stage of lytic infection, while well-characterized inhibitors of enzymes, such as mitogen-activated protein kinase, phosphatidylinositol 3-kinase, and protein kinase C, known to be involved in BZLF1 gene expression did not. Inhibition of CDK activity resulted in the accumulation of the hypophosphorylated form of Rb protein and inhibition of expression of EBV immediate-early and early proteins. Cycloheximide block-and-release experiments clearly demonstrated that even in the presence of enough amounts of the BZLF1 protein, purvalanol A blocked expression of lytic viral proteins at transcription level. Furthermore, reporter gene experiments confirmed that BZLF1-induced activation of early EBV promoters was impaired in the presence of the CDK inhibitor. We conclude here that the EBV lytic program promotes specific cell cycle-associated activity involved in the progression from G1 to S phase because the S-phase-like cellular environment is essential for the expression of immediate-early and early genes supplying the viral replication proteins and hence for lytic viral replication.


Journal of Virology | 2005

Two Sp1/Sp3 Binding Sites in the Major Immediate-Early Proximal Enhancer of Human Cytomegalovirus Have a Significant Role in Viral Replication

Hiroki Isomura; Mark F. Stinski; Ayumi Kudoh; Tohru Daikoku; Noriko Shirata; Tatsuya Tsurumi

ABSTRACT We previously demonstrated that the major immediate early (MIE) proximal enhancer containing one GC box and the TATA box containing promoter are minimal elements required for transcription and viral replication in human fibroblast cells (H. Isomura, T. Tsurumi, M. F. Stinski, J. Virol. 78:12788-12799, 2004). After infection, the level of Sp1 increased while Sp3 remained constant. Here we report that either Sp1 or Sp3 transcription factors bind to the GC boxes located at approximately positions −55 and −75 relative to the transcription start site (+1). Both the Sp1 and Sp3 binding sites have a positive and synergistic effect on the human cytomegalovirus (HCMV) major immediate-early (MIE) promoter. There was little to no change in MIE transcription or viral replication for recombinant viruses with one or the other Sp1 or Sp3 binding site mutated. In contrast, mutation of both the Sp1 and Sp3 binding sites caused inefficient MIE transcription and viral replication. These data indicate that the Sp1 and Sp3 binding sites have a significant role in HCMV replication in human fibroblast cells.


Biochimica et Biophysica Acta | 2000

Co-expression of human chaperone Hsp70 and Hsdj or Hsp40 co-factor increases solubility of overexpressed target proteins in insect cells.

Naoaki Yokoyama; Mineo Hirata; Kenzo Ohtsuka; Yukihiro Nishiyama; Ken Fujii; Masatoshi Fujita; Kiyotaka Kuzushima; Tohru Kiyono; Tatsuya Tsurumi

The insect-baculovirus expression system has proved particularly useful for producing recombinant proteins that are biologically active. Overexpression of foreign proteins using the recombinant baculovirus system is often accompanied by aggregation of the overexpressed protein, which is thought to be due to a limitation of the translated protein folding in the infected cells. Co-infection of a recombinant baculovirus capable of expressing the human chaperone Hsp70 slightly increased the solubility of the overexpressed Epstein-Barr virus replication protein, BZLF1. Co-expression of Hsp70 and its co-factor, Hsdj or Hsp40, was here found to improve the solubility of the target protein several fold. Thus, a baculovirus expression system producing these molecular chaperones may find application for improved production of target foreign gene products in insect cells.


Journal of Virology | 2004

Role of the Proximal Enhancer of the Major Immediate-Early Promoter in Human Cytomegalovirus Replication

Hiroki Isomura; Tatsuya Tsurumi; Mark F. Stinski

ABSTRACT The human cytomegalovirus (CMV) enhancer has a distal component (positions −550 to −300) and a proximal component (−300 to −39) relative to the transcription start site (+1) of the major immediate-early (MIE) promoter. Without the distal enhancer, human CMV replicates slower and has a small-plaque phenotype. We determined the sequence requirements of the proximal enhancer by making 5′-end deletions to positions −223, −173, −116, −67, and −39. Even though recombinant virus with the proximal enhancer deleted to −39 has the minimal TATA box-containing MIE promoter element, it cannot replicate independently in human fibroblast cells. Recombinant virus with a deletion to −67 has an Sp-1 transcription factor binding site which may represent a minimal enhancer element for recombinant virus replication in human fibroblast cells. Although recombinant virus with a deletion to −223 replicates to titers at least 100-fold less than that of the wild-type virus, it replicates to titers 8-fold higher than that of recombinant virus with a deletion to −173 and 20-fold higher than that of virus with a deletion to −67. Recombinant virus with a deletion to −173 replicates more efficiently than that with a deletion to −116. There was a direct correlation between the level of infectious virus replication and time after infection, amount of MIE gene transcription, MIE and early viral protein synthesis, and viral DNA synthesis. The extent of the proximal enhancer determines the efficiency of viral replication.

Collaboration


Dive into the Tatsuya Tsurumi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge