Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroki Isomura is active.

Publication


Featured researches published by Hiroki Isomura.


Journal of Biological Chemistry | 2005

Activation of Ataxia Telangiectasia-mutated DNA Damage Checkpoint Signal Transduction Elicited by Herpes Simplex Virus Infection

Noriko Shirata; Ayumi Kudoh; Tohru Daikoku; Yasutoshi Tatsumi; Masatoshi Fujita; Tohru Kiyono; Yutaka Sugaya; Hiroki Isomura; Kanji Ishizaki; Tatsuya Tsurumi

Eukaryotic cells are equipped with machinery to monitor and repair damaged DNA. Herpes simplex virus (HSV) DNA replication occurs at discrete sites in nuclei, the replication compartment, where viral replication proteins cluster and synthesize a large amount of viral DNA. In the present study, HSV infection was found to elicit a cellular DNA damage response, with activation of the ataxia-telangiectasia-mutated (ATM) signal transduction pathway, as observed by autophosphorylation of ATM and phosphorylation of multiple downstream targets including Nbs1, Chk2, and p53, while infection with a UV-inactivated virus or with a replication-defective virus did not. Activated ATM and the DNA damage sensor MRN complex composed of Mre11, Rad50, and Nbs1 were recruited and retained at sites of viral DNA replication, probably recognizing newly synthesized viral DNAs as abnormal DNA structures. These events were not observed in ATM-deficient cells, indicating ATM dependence. In Nbs1-deficient cells, HSV infection induced an ATM DNA damage response that was delayed, suggesting a functional MRN complex requirement for efficient ATM activation. However, ATM silencing had no effect on viral replication in 293T cells. Our data open up an interesting question of how the virus is able to complete its replication, although host cells activate ATM checkpoint signaling in response to the HSV infection.


PLOS Pathogens | 2009

Degradation of Phosphorylated p53 by Viral Protein-ECS E3 Ligase Complex

Yoshitaka Sato; Takumi Kamura; Noriko Shirata; Takayuki Murata; Ayumi Kudoh; Satoko Iwahori; Sanae Nakayama; Hiroki Isomura; Yukihiro Nishiyama; Tatsuya Tsurumi

p53-signaling is modulated by viruses to establish a host cellular environment advantageous for their propagation. The Epstein-Barr virus (EBV) lytic program induces phosphorylation of p53, which prevents interaction with MDM2. Here, we show that induction of EBV lytic program leads to degradation of p53 via an ubiquitin-proteasome pathway independent of MDM2. The BZLF1 protein directly functions as an adaptor component of the ECS (Elongin B/C-Cul2/5-SOCS-box protein) ubiquitin ligase complex targeting p53 for degradation. Intringuingly, C-terminal phosphorylation of p53 resulting from activated DNA damage response by viral lytic replication enhances its binding to BZLF1 protein. Purified BZLF1 protein-associated ECS could be shown to catalyze ubiquitination of phospho-mimetic p53 more efficiently than the wild-type in vitro. The compensation of p53 at middle and late stages of the lytic infection inhibits viral DNA replication and production during lytic infection, suggesting that the degradation of p53 is required for efficient viral propagation. Taken together, these findings demonstrate a role for the BZLF1 protein-associated ECS ligase complex in regulation of p53 phosphorylated by activated DNA damage signaling during viral lytic infection.


Journal of Virology | 2003

The Human Cytomegalovirus Major Immediate-Early Enhancer Determines the Efficiency of Immediate-Early Gene Transcription and Viral Replication in Permissive Cells at Low Multiplicity of Infection

Hiroki Isomura; Mark F. Stinski

ABSTRACT To determine the effect of the human cytomegalovirus (CMV) major immediate-early (MIE) enhancer or promoter on the efficiency of viral replication in permissive human cells, we constructed recombinant viruses with their human MIE promoter, enhancer, and promoter plus enhancer replaced with the murine CMV components. After a low multiplicity of infection (MOI) (0.01 PFU/cell), recombinant human CMV with the murine CMV promoter replicated like the wild type but recombinant virus with the murine enhancer replicated less efficiently. Immediate-early (IE) viral protein pIE72 (UL123), early viral protein (UL44), and viral DNA synthesis were significantly decreased. The effect of the human CMV enhancer substitution with the murine CMV enhancer was also demonstrated in different cell types by using recombinant virus with the UL127 promoter, driving the expression of green fluorescent protein (GFP). After an MOI of 1, GFP expression was high with the human CMV enhancer and significantly lower with the murine CMV enhancer. Even though at a high MOI (10 PFU/cell), the murine CMV enhancer was as efficient as the human CMV enhancer for the transcription of IE genes in human foreskin fibroblast cells, at lower MOIs, the murine CMV enhancer was less efficient. Proximal and distal chimeras of the human and murine enhancers also replicated less efficiently at a low MOI and expressed lower levels of GFP from the UL127 promoter. These experiments demonstrate that the entire human CMV enhancer has evolved for the efficient expression of the viral IE and early genes in human cells. Possible functions of the human CMV enhancer and promoter at a low MOI are discussed.


Journal of Virology | 2005

Architecture of Replication Compartments Formed during Epstein-Barr Virus Lytic Replication

Tohru Daikoku; Ayumi Kudoh; Masatoshi Fujita; Yutaka Sugaya; Hiroki Isomura; Noriko Shirata; Tatsuya Tsurumi

ABSTRACT Epstein-Barr virus (EBV) productive DNA replication occurs at discrete sites, called replication compartments, in nuclei. In this study we performed comprehensive analyses of the architecture of the replication compartments. The BZLF1 oriLyt binding proteins showed a fine, diffuse pattern of distribution throughout the nuclei at immediate-early stages of induction and then became associated with the replicating EBV genome in the replication compartments during lytic infection. The BMRF1 polymerase (Pol) processivity factor showed a homogenous, not dot-like, distribution in the replication compartments, which completely coincided with the newly synthesized viral DNA. Inhibition of viral DNA replication with phosphonoacetic acid, a viral DNA Pol inhibitor, eliminated the DNA-bound form of the BMRF1 protein, although the protein was sufficiently expressed in the cells. These observations together with the findings that almost all abundantly expressed BMRF1 proteins existed in the DNA-bound form suggest that the BMRF1 proteins not only act at viral replication forks as Pol processive factors but also widely distribute on newly replicated EBV genomic DNA. In contrast, the BALF5 Pol catalytic protein, the BALF2 single-stranded-DNA binding protein, and the BBLF2/3 protein, a component of the helicase-primase complex, were colocalized as distinct dots distributed within replication compartments, representing viral replication factories. Whereas cellular replication factories are constructed based on nonchromatin nuclear structures and nuclear matrix, viral replication factories were easily solubilized by DNase I treatment. Thus, compared with cellular DNA replication, EBV lytic DNA replication factories would be simpler so that construction of the replication domain would be more relaxed.


Journal of Virology | 2009

Homologous Recombinational Repair Factors Are Recruited and Loaded onto the Viral DNA Genome in Epstein-Barr Virus Replication Compartments

Ayumi Kudoh; Satoko Iwahori; Yoshitaka Sato; Sanae Nakayama; Hiroki Isomura; Takayuki Murata; Tatsuya Tsurumi

ABSTRACT Homologous recombination is an important biological process that facilitates genome rearrangement and repair of DNA double-strand breaks (DSBs). The induction of Epstein-Barr virus (EBV) lytic replication induces ataxia telangiectasia-mutated (ATM)-dependent DNA damage checkpoint signaling, leading to the clustering of phosphorylated ATM and Mre11/Rad50/Nbs1 (MRN) complexes to sites of viral genome synthesis in nuclei. Here we report that homologous recombinational repair (HRR) factors such as replication protein A (RPA), Rad51, and Rad52 as well as MRN complexes are recruited and loaded onto the newly synthesized viral genome in replication compartments. The 32-kDa subunit of RPA is extensively phosphorylated at sites in accordance with those with ATM. The hyperphosphorylation of RPA32 causes a change in RPA conformation, resulting in a switch from the catalysis of DNA replication to the participation in DNA repair. The levels of Rad51 and phosphorylated RPA were found to increase with the progression of viral productive replication, while that of Rad52 proved constant. Furthermore, biochemical fractionation revealed increases in levels of DNA-bound forms of these HRRs. Bromodeoxyuridine-labeled chromatin immunoprecipitation and PCR analyses confirmed the loading of RPA, Rad 51, Rad52, and Mre11 onto newly synthesized viral DNA, and terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling analysis demonstrated DSBs in the EBV replication compartments. HRR factors might be recruited to repair DSBs on the viral genome in viral replication compartments. RNA interference knockdown of RPA32 and Rad51 prevented viral DNA synthesis remarkably, suggesting that homologous recombination and/or repair of viral DNA genome might occur, coupled with DNA replication to facilitate viral genome synthesis.


Journal of Virology | 2004

Inhibition of S-phase cyclin-dependent kinase activity blocks expression of Epstein-Barr virus immediate-early and early genes, preventing viral lytic replication.

Ayumi Kudoh; Tohru Daikoku; Yutaka Sugaya; Hiroki Isomura; Masatoshi Fujita; Tohru Kiyono; Yukihiro Nishiyama; Tatsuya Tsurumi

ABSTRACT The induction of lytic replication of the Epstein-Barr virus (EBV) completely arrests cell cycle progression, in spite of elevation of S-phase cyclin-dependent kinase (CDK) activity, thereby causing accumulation of hyperphosphorylated forms of retinoblastoma (Rb) protein (A. Kudoh, M. Fujita, T. Kiyono, K. Kuzushima, Y. Sugaya, S. Izuta, Y. Nishiyama, and T. Tsurumi, J. Virol. 77:851-861, 2003). Thus, the EBV lytic program appears to promote specific cell cycle-associated activity involved in the progression from G1 to S phase. We have proposed that this provides a cellular environment that is advantageous for EBV productive infection. Purvalanol A and roscovitine, inhibitors of S-phase CDKs, blocked the viral lytic replication when cells were treated at the early stage of lytic infection, while well-characterized inhibitors of enzymes, such as mitogen-activated protein kinase, phosphatidylinositol 3-kinase, and protein kinase C, known to be involved in BZLF1 gene expression did not. Inhibition of CDK activity resulted in the accumulation of the hypophosphorylated form of Rb protein and inhibition of expression of EBV immediate-early and early proteins. Cycloheximide block-and-release experiments clearly demonstrated that even in the presence of enough amounts of the BZLF1 protein, purvalanol A blocked expression of lytic viral proteins at transcription level. Furthermore, reporter gene experiments confirmed that BZLF1-induced activation of early EBV promoters was impaired in the presence of the CDK inhibitor. We conclude here that the EBV lytic program promotes specific cell cycle-associated activity involved in the progression from G1 to S phase because the S-phase-like cellular environment is essential for the expression of immediate-early and early genes supplying the viral replication proteins and hence for lytic viral replication.


Journal of Virology | 2005

Two Sp1/Sp3 Binding Sites in the Major Immediate-Early Proximal Enhancer of Human Cytomegalovirus Have a Significant Role in Viral Replication

Hiroki Isomura; Mark F. Stinski; Ayumi Kudoh; Tohru Daikoku; Noriko Shirata; Tatsuya Tsurumi

ABSTRACT We previously demonstrated that the major immediate early (MIE) proximal enhancer containing one GC box and the TATA box containing promoter are minimal elements required for transcription and viral replication in human fibroblast cells (H. Isomura, T. Tsurumi, M. F. Stinski, J. Virol. 78:12788-12799, 2004). After infection, the level of Sp1 increased while Sp3 remained constant. Here we report that either Sp1 or Sp3 transcription factors bind to the GC boxes located at approximately positions −55 and −75 relative to the transcription start site (+1). Both the Sp1 and Sp3 binding sites have a positive and synergistic effect on the human cytomegalovirus (HCMV) major immediate-early (MIE) promoter. There was little to no change in MIE transcription or viral replication for recombinant viruses with one or the other Sp1 or Sp3 binding site mutated. In contrast, mutation of both the Sp1 and Sp3 binding sites caused inefficient MIE transcription and viral replication. These data indicate that the Sp1 and Sp3 binding sites have a significant role in HCMV replication in human fibroblast cells.


Journal of Virology | 2004

Role of the Proximal Enhancer of the Major Immediate-Early Promoter in Human Cytomegalovirus Replication

Hiroki Isomura; Tatsuya Tsurumi; Mark F. Stinski

ABSTRACT The human cytomegalovirus (CMV) enhancer has a distal component (positions −550 to −300) and a proximal component (−300 to −39) relative to the transcription start site (+1) of the major immediate-early (MIE) promoter. Without the distal enhancer, human CMV replicates slower and has a small-plaque phenotype. We determined the sequence requirements of the proximal enhancer by making 5′-end deletions to positions −223, −173, −116, −67, and −39. Even though recombinant virus with the proximal enhancer deleted to −39 has the minimal TATA box-containing MIE promoter element, it cannot replicate independently in human fibroblast cells. Recombinant virus with a deletion to −67 has an Sp-1 transcription factor binding site which may represent a minimal enhancer element for recombinant virus replication in human fibroblast cells. Although recombinant virus with a deletion to −223 replicates to titers at least 100-fold less than that of the wild-type virus, it replicates to titers 8-fold higher than that of recombinant virus with a deletion to −173 and 20-fold higher than that of virus with a deletion to −67. Recombinant virus with a deletion to −173 replicates more efficiently than that with a deletion to −116. There was a direct correlation between the level of infectious virus replication and time after infection, amount of MIE gene transcription, MIE and early viral protein synthesis, and viral DNA synthesis. The extent of the proximal enhancer determines the efficiency of viral replication.


Journal of Virology | 2012

Epigenetic Histone Modification of Epstein-Barr Virus BZLF1 Promoter during Latency and Reactivation in Raji Cells

Takayuki Murata; Yutaka Kondo; Atsuko Sugimoto; Daisuke Kawashima; Shin'ichi Saito; Hiroki Isomura; Teru Kanda; Tatsuya Tsurumi

ABSTRACT The Epstein-Barr virus (EBV) predominantly establishes latent infection in B cells, and the reactivation of the virus from latency is dependent on the expression of the viral BZLF1 protein. The BZLF1 promoter (Zp) normally exhibits only low basal activity but is activated in response to chemical or biological inducers, such as 12-O-tetradecanoylphorbol-13-acetate (TPA), calcium ionophores, or histone deacetylase (HDAC) inhibitors. In some cell lines latently infected with EBV, an HDAC inhibitor alone can induce BZLF1 transcription, while the treatment does not enhance expression in other cell lines, such as B95-8 or Raji cells, suggesting unknown suppressive mechanisms besides histone deacetylation in those cells. Here, we found the epigenetic modification of the BZLF1 promoter in latent Raji cells by histone H3 lysine 27 trimethylation (H3K27me3), H3K9me2/me3, and H4K20me3. Levels of active markers such as histone acetylation and H3K4me3 were low in latent cells but increased upon reactivation. Treatment with 3-deazaneplanocin A (DZNep), an inhibitor of H3K27me3 and H4K20me3, significantly enhanced the BZLF1 transcription in Raji cells when in combination with an HDAC inhibitor, trichostatin A (TSA). The knockdown of Ezh2 or Suv420h1, histone methyltransferases for H3K27me3 or H4K20me3, respectively, further proved the suppression of Zp by the methylations. Taken together, the results indicate that H3K27 methylation and H4K20 methylation are involved, at least partly, in the maintenance of latency, and histone acetylation and H3K4 methylation correlate with the reactivation of the virus in Raji cells.


Journal of Virology | 2013

Epstein-Barr Virus Deubiquitinase Downregulates TRAF6-Mediated NF-κB Signaling during Productive Replication

Shin'ichi Saito; Takayuki Murata; Teru Kanda; Hiroki Isomura; Yohei Narita; Atsuko Sugimoto; Daisuke Kawashima; Tatsuya Tsurumi

ABSTRACT Epstein-Barr virus (EBV), a human oncogenic herpesvirus that establishes a lifelong latent infection in the host, occasionally enters lytic infection to produce progeny viruses. The EBV oncogene latent membrane protein 1 (LMP1), which is expressed in both latent and lytic infection, constitutively activates the canonical NF-κB (p65) pathway. Such LMP1-mediated NF-κB activation is necessary for proliferation of latently infected cells and inhibition of viral lytic cycle progression. Actually, canonical NF-κB target gene expression was suppressed upon the onset of lytic infection. TRAF6, which is activated by conjugation of polyubiquitin chains, associates with LMP1 to mediate NF-κB signal transduction. We have found that EBV-encoded BPLF1 interacts with and deubiquitinates TRAF6 to inhibit NF-κB signaling during lytic infection. HEK293 cells with BPLF1-deficient recombinant EBV exhibited poor viral DNA replication compared with the wild type. Furthermore, exogenous expression of BPLF1 or p65 knockdown in cells restored DNA replication of BPLF1-deficient viruses, indicating that EBV BPLF1 deubiquitinates TRAF6 to inhibit NF-κB signal transduction, leading to promotion of viral lytic DNA replication.

Collaboration


Dive into the Hiroki Isomura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satoko Iwahori

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark F. Stinski

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge