Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tatyana N. Milovanova is active.

Publication


Featured researches published by Tatyana N. Milovanova.


Journal of Cell Biology | 2005

Selective role for superoxide in InsP3 receptor–mediated mitochondrial dysfunction and endothelial apoptosis

Muniswamy Madesh; Brian J. Hawkins; Tatyana N. Milovanova; Cunnigaiper D. Bhanumathy; Suresh K. Joseph; Satish P. RamachandraRao; Kumar Sharma; Tomohiro Kurosaki; Aron B. Fisher

Reactive oxygen species (ROS) play a divergent role in both cell survival and cell death during ischemia/reperfusion (I/R) injury and associated inflammation. In this study, ROS generation by activated macrophages evoked an intracellular Ca2+ ([Ca2+]i) transient in endothelial cells that was ablated by a combination of superoxide dismutase and an anion channel blocker. [Ca2+]i store depletion, but not extracellular Ca2+ chelation, prevented [Ca2+]i elevation in response to O2 .− that was inositol 1,4,5-trisphosphate (InsP3) dependent, and cells lacking the three InsP3 receptor (InsP3R) isoforms failed to display the [Ca2+]i transient. Importantly, the O2 .−-triggered Ca2+ mobilization preceded a loss in mitochondrial membrane potential that was independent of other oxidants and mitochondrially derived ROS. Activation of apoptosis occurred selectively in response to O2 .− and could be prevented by [Ca2+]i buffering. This study provides evidence that O2 .− facilitates an InsP3R-linked apoptotic cascade and may serve a critical function in I/R injury and inflammation.


Journal of Applied Physiology | 2009

Hyperbaric oxygen stimulates vasculogenic stem cell growth and differentiation in vivo

Tatyana N. Milovanova; Veena M. Bhopale; Elena M. Sorokina; Jonni S. Moore; Thomas K. Hunt; Martin Hauer-Jensen; Omaida C. Velazquez; Stephen R. Thom

We hypothesized that oxidative stress from hyperbaric oxygen (HBO(2), 2.8 ATA for 90 min daily) exerts a trophic effect on vasculogenic stem cells. In a mouse model, circulating stem/progenitor cell (SPC) recruitment and differentiation in subcutaneous Matrigel were stimulated by HBO(2) and by a physiological oxidative stressor, lactate. In combination, HBO(2) and lactate had additive effects. Vascular channels lined by CD34(+) SPCs were identified. HBO(2) and lactate accelerated channel development, cell differentiation based on surface marker expression, and cell cycle entry. CD34(+) SPCs exhibited increases in thioredoxin-1 (Trx1), Trx reductase, hypoxia-inducible factors (HIF)-1, -2, and -3, phosphorylated mitogen-activated protein kinases, vascular endothelial growth factor, and stromal cell-derived factor-1. Cell recruitment to Matrigel and protein synthesis responses were abrogated by N-acetyl cysteine, dithioerythritol, oxamate, apocynin, U-0126, neutralizing anti-vascular endothelial growth factor, or anti-stromal cell-derived factor-1 antibodies, and small inhibitory RNA to Trx reductase, lactate dehydrogenase, gp91(phox), HIF-1 or -2, and in mice conditionally null for HIF-1 in myeloid cells. By causing an oxidative stress, HBO(2) activates a physiological redox-active autocrine loop in SPCs that stimulates vasculogenesis. Thioredoxin system activation leads to elevations in HIF-1 and -2, followed by synthesis of HIF-dependent growth factors. HIF-3 has a negative impact on SPCs.


Molecular and Cellular Biology | 2008

Lactate Stimulates Vasculogenic Stem Cells via the Thioredoxin System and Engages an Autocrine Activation Loop Involving Hypoxia-Inducible Factor 1

Tatyana N. Milovanova; Veena M. Bhopale; Elena M. Sorokina; Jonni S. Moore; Thomas K. Hunt; Martin Hauer-Jensen; Omaida C. Velazquez; Stephen R. Thom

ABSTRACT The recruitment and differentiation of circulating stem/progenitor cells (SPCs) in subcutaneous Matrigel in mice was assessed. There were over one million CD34+ SPCs per Matrigel plug 18 h after Matrigel implantation, and including a polymer to elevate the lactate concentration increased the number of SPCs by 3.6-fold. Intricate CD34+ cell-lined channels were linked to the systemic circulation, and lactate accelerated cell differentiation as evaluated based on surface marker expression and cell cycle entry. CD34+ SPCs from lactate-supplemented Matrigel exhibited significantly higher concentrations of thioredoxin 1 (Trx1) and hypoxia-inducible factor 1 (HIF-1) than cells from unsupplemented Matrigel, whereas Trx1 and HIF-1 in CD45+ leukocytes were not elevated by lactate. Results obtained using small inhibitory RNA (siRNA) specific to HIF-1 and mice with conditionally HIF-1 null myeloid cells indicated that SPC recruitment and lactate-mediated effects were dependent on HIF-1. Cells from lactate-supplemented Matrigel had higher concentrations of phosphorylated extracellular signal-regulated kinases 1 and 2, Trx1, Trx reductase (TrxR), vascular endothelial growth factor (VEGF), and stromal cell-derived factor 1 (SDF-1) than cells from unsupplemented Matrigel. SPC recruitment and protein changes were inhibited by siRNA specific to lactate dehydrogenase, TrxR, or HIF-1 and by oxamate, apocynin, U0126, N-acetylcysteine, dithioerythritol, and antibodies to VEGF or SDF-1. Oxidative stress from lactate metabolism by SPCs accelerated further SPC recruitment and differentiation through Trx1-mediated elevations in HIF-1 levels and the subsequent synthesis of HIF-1-dependent growth factors.


Journal of Applied Physiology | 2011

Microparticles initiate decompression-induced neutrophil activation and subsequent vascular injuries

Stephen R. Thom; Ming Yang; Veena M. Bhopale; Shaohui Huang; Tatyana N. Milovanova

Progressive elevations in circulating annexin V-coated microparticles (MPs) derived from leukocytes, erythrocytes, platelets, and endothelial cells are found in mice subjected to increasing decompression stresses. Individual MPs exhibit surface markers from multiple cells. MPs expressing platelet surface markers, in particular, interact with circulating neutrophils, causing them to degranulate and leading to further MP production. MPs can be lysed by incubation with polyethylene glycol (PEG) telomere B surfactant, and the number of circulating MPs is reduced by infusion of mice with PEG or antibody to annexin V. Myeloperoxidase deposition and neutrophil sequestration in tissues occur in response to decompression, and the pattern differs among brain, omentum, psoas, and leg skeletal muscle. Both MP abatement strategies reduce decompression-induced intravascular neutrophil activation, neutrophil sequestration, and tissue injury documented as elevations of vascular permeability and activated caspase-3. We conclude that MPs generated by decompression stresses precipitate neutrophil activation and vascular damage.


Journal of Biological Chemistry | 2008

Actin S-Nitrosylation Inhibits Neutrophil β2 Integrin Function

Stephen R. Thom; Veena M. Bhopale; D. Joshua Mancini; Tatyana N. Milovanova

The focus of this work was to elucidate the mechanism for inhibition of neutrophil β2 integrin adhesion molecules by hyperoxia. Results demonstrate that exposure to high oxygen partial pressures increases synthesis of reactive species derived from type 2 nitric-oxide synthase and myeloperoxidase, leading to excessive S-nitrosylation of β-actin and possibly profilin. Hyperoxia causes S-nitrosylation of the four cysteine moieties closest to the carboxyl-terminal end of actin, which results in formation of short actin filaments. This alters actin polymerization, network formation, and intracellular distribution, as well as inhibits β2 integrin clustering. If neutrophils are exposed to ultraviolet light to reverse S-nitrosylation, or are incubated with N-formyl-methionyl-leucine-phenylalanine to trigger “inside-out” activation, the effects of hyperoxia are reversed. We conclude that cytoskeletal changes triggered by hyperoxia inhibit β2 integrin-dependent neutrophil adhesion.


Journal of Applied Physiology | 2012

Microparticle production, neutrophil activation, and intravascular bubbles following open-water SCUBA diving

Stephen R. Thom; Tatyana N. Milovanova; Marina Bogush; Veena M. Bhopale; Ming Yang; Kim Bushmann; Neal W. Pollock; Marko Ljubkovic; Petar J. Denoble; Zeljko Dujic

The goal of this study was to evaluate annexin V-positive microparticles (MPs) and neutrophil activation in humans following decompression from open-water SCUBA diving with the hypothesis that changes are related to intravascular bubble formation. Sixteen male volunteer divers followed a uniform profile of four daily SCUBA dives to 18 m of sea water for 47 min. Blood was obtained prior to and at 80 min following the first and fourth dives to evaluate the impact of repetitive diving, and intravascular bubbles were quantified by trans-thoracic echocardiography carried out at 20-min intervals for 2 h after each dive. MPs increased by 3.4-fold after each dive, neutrophil activation occurred as assessed by surface expression of myeloperoxidase and the CD18 component of β(2)-integrins, and there was an increased presence of the platelet-derived CD41 protein on the neutrophil surface indicating interactions with platelet membranes. Intravascular bubbles were detected in all divers. Surprisingly, significant inverse correlations were found among postdiving bubble scores and MPs, most consistently at 80 min or more after the dive on the fourth day. There were significant positive correlations between MPs and platelet-neutrophil interactions after the first dive and between platelet-neutrophil interactions and neutrophil activation documented as an elevation in β(2)-integrin expression after the fourth dive. We conclude that MPs- and neutrophil-related events in humans are consistent with findings in an animal decompression model. Whether there are causal relationships among bubbles, MPs, platelet-neutrophil interactions, and neutrophil activation remains obscure and requires additional study.


Journal of Applied Physiology | 2013

Bubbles, microparticles, and neutrophil activation: changes with exercise level and breathing gas during open-water SCUBA diving

Stephen R. Thom; Tatyana N. Milovanova; Marina Bogush; Ming Yang; Veena M. Bhopale; Neal W. Pollock; Marko Ljubkovic; Petar J. Denoble; Dennis Madden; Mislav Lozo; Zeljko Dujic

The study goal was to evaluate responses in humans following decompression from open-water SCUBA diving with the hypothesis that exertion underwater and use of a breathing mixture containing more oxygen and less nitrogen (enriched air nitrox) would alter annexin V-positive microparticle (MP) production and size changes and neutrophil activation, as well as their relationships to intravascular bubble formation. Twenty-four divers followed a uniform dive profile to 18 m of sea water breathing air or 22.5 m breathing 32% oxygen/68% nitrogen for 47 min, either swimming with moderately heavy exertion underwater or remaining stationary at depth. Blood was obtained pre- and at 15 and 120 min postdive. Intravascular bubbles were quantified by transthoracic echocardiography postdive at 20-min intervals for 2 h. There were no significant differences in maximum bubble scores among the dives. MP number increased 2.7-fold, on average, within 15 min after each dive; only the air-exertion dive resulted in a significant further increase to 5-fold over baseline at 2 h postdive. Neutrophil activation occurred after all dives. For the enriched air nitrox stationary at depth dive, but not for other conditions, the numbers of postdive annexin V-positive particles above 1 μm in diameter were correlated with intravascular bubble scores (correlation coefficients ∼0.9, P < 0.05). We conclude that postdecompression relationships among bubbles, MPs, platelet-neutrophil interactions, and neutrophil activation appear to exist, but more study is required to improve confidence in the associations.


Journal of Applied Physiology | 2012

Microparticle enlargement and altered surface proteins after air decompression are associated with inflammatory vascular injuries.

Ming Yang; Tatyana N. Milovanova; Marina Bogush; Gunalp Uzun; Veena M. Bhopale; Stephen R. Thom

Studies in a murine model have shown that decompression stress triggers a progressive elevation in the number of circulating annexin V-coated microparticles derived from leukocytes, erythrocytes, platelets, and endothelial cells. We noted that some particles appeared to be larger than anticipated, and size continued to increase for ≥24 h postdecompression. These observations led to the hypothesis that inert gas bubbles caused the enlargement and particle size could be reduced by hydrostatic pressure. After demonstrating pressure-induced particle size reduction, we hypothesized that annexin V-positive particle changes associated with decompression contributed to their proinflammatory potential. Intravenous injection of naive mice with particles isolated from decompressed mice, but not control mice, caused intravascular neutrophil activation; perivascular neutrophil sequestration and tissue injuries were documented as elevations of vascular permeability and activated caspase-3. These changes were not observed if mice were injected with particles that had been subjected to hydrostatic recompression or particles that had been emulsified by incubation with polyethylene glycol telomere B surfactant. Hydrostatic pressure and surfactant incubation also altered the pattern of proteins expressed on the surface of particles. We conclude that proinflammatory events and vascular damage are due to enlargement of annexin V-coated particles and/or changes in surface marker protein pattern associated with provocative decompression. Injection of annexin V-coated particles from decompressed mice will recapitulate the pathophysiological vascular changes observed following decompression stress.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2009

Identification of the amino acid sequence that targets peroxiredoxin 6 to lysosome-like structures of lung epithelial cells.

Elena M. Sorokina; Sheldon I. Feinstein; Tatyana N. Milovanova; Aron B. Fisher

Peroxiredoxin 6 (Prdx6), an enzyme with glutathione peroxidase and PLA2 (aiPLA2) activities, is highly expressed in respiratory epithelium, where it participates in phospholipid turnover and antioxidant defense. Prdx6 has been localized by immunocytochemistry and subcellular fractionation to acidic organelles (lung lamellar bodies and lysosomes) and cytosol. On the basis of their pH optima, we have postulated that protein subcellular localization determines the balance between the two activities of Prdx6. Using green fluorescent protein-labeled protein expression in alveolar epithelial cell lines, we showed Prdx6 localization to organellar structures resembling lamellar bodies in mouse lung epithelial (MLE-12) cells and lysosomes in A549 cells. Localization within lamellar bodies/lysosomes was in the luminal compartment. Targeting to lysosome-like organelles was abolished by the deletion of amino acids 31-40 from the Prdx6 NH2-terminal region; deletion of the COOH-terminal region had no effect. A green fluorescent protein-labeled peptide containing only amino acids 31-40 showed lysosomal targeting that was abolished by mutation of S32 or G34 within the peptide. Studies with mutated protein indicated that lipid binding was not necessary for Prdx6 targeting. This peptide sequence has no homology to known organellar targeting motifs. These studies indicate that the localization of Prdx6 in acidic organelles and consequent PLA2 activity depend on a novel 10-aa peptide located at positions 31-40 of the protein.


Respiratory Research | 2005

Surfactant Protein-A inhibits Aspergillus fumigatus -induced allergic T-cell responses

Seth T. Scanlon; Tatyana N. Milovanova; S. Kierstein; Yang Cao; Elena N. Atochina; Yaniv Tomer; Scott J. Russo; Michael F. Beers; Angela Haczku

BackgroundThe pulmonary surfactant protein (SP)-A has potent immunomodulatory activities but its role and regulation during allergic airway inflammation is unknown.MethodsWe studied changes in SP-A expression in the bronchoalveolar lavage (BAL) using a murine model of single Aspergillus fumigatus (Af) challenge of sensitized animals.ResultsSP-A protein levels in the BAL fluid showed a rapid, transient decline that reached the lowest values (25% of controls) 12 h after intranasal Af provocation of sensitized mice. Decrease of SP-A was associated with influx of inflammatory cells and increase of IL-4 and IL-5 mRNA and protein levels. Since levels of SP-A showed a significant negative correlation with these BAL cytokines (but not with IFN-γ), we hypothesized that SP-A exerts an inhibitory effect on Th2-type immune responses. To study this hypothesis, we used an in vitro Af-rechallenge model. Af-induced lymphocyte proliferation of cells isolated from sensitized mice was inhibited in a dose-dependent manner by addition of purified human SP-A (0.1–10 μg/ml). Flow cytometric studies on Af-stimulated lymphocytes indicated that the numbers of CD4+ (but not CD8+) T cells were significantly increased in the parental population and decreased in the third and fourth generation in the presence of SP-A. Further, addition of SP-A to the tissue culture inhibited Af-induced IL-4 and IL-5 production suggesting that SP-A directly suppressed allergen-stimulated CD4+ T cell function.ConclusionWe speculate that a transient lack of this lung collectin following allergen exposure of the airways may significantly contribute to the development of a T-cell dependent allergic immune response.

Collaboration


Dive into the Tatyana N. Milovanova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming Yang

University of Maryland

View shared research outputs
Top Co-Authors

Avatar

Jonni S. Moore

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aron B. Fisher

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Elena M. Sorokina

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Thomas K. Hunt

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge