Tatyana N. Tarasenko
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tatyana N. Tarasenko.
Science | 2006
Prapaporn Pisitkun; Jonathan A. Deane; Michael J. Difilippantonio; Tatyana N. Tarasenko; Anne B. Satterthwaite; Silvia Bolland
Antibodies against nuclear self-antigens are characteristic of systemic autoimmunity, although mechanisms promoting their generation and selection are unclear. Here, we report that B cells containing the Y-linked autoimmune accelerator (Yaa) locus are intrinsically biased toward nucleolar antigens because of increased expression of TLR7, a single-stranded RNA-binding innate immune receptor. The TLR7 gene is duplicated in Yaa mice because of a 4-Megabase expansion of the pseudoautosomal region. These results reveal high divergence in mouse Y chromosomes and represent a good example of gene copy number qualitatively altering a polygenic disease manifestation.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Tatyana N. Tarasenko; Hemanta K. Kole; Anthony W. Chi; Margaret M. Mentink-Kane; Thomas A. Wynn; Silvia Bolland
The 5′-phosphoinositol phosphatase SHIP negatively regulates signaling pathways triggered by antigen, cytokine and Fc receptors in both lymphocytes and myeloid cells. Mice with germ-line (null) deletion of SHIP develop a myeloproliferative-like syndrome that causes early lethality. Lymphocyte anomalies have been observed in SHIP-null mice, but it is unclear whether they are due to an intrinsic requirement of SHIP in these cells or a consequence of the severe myeloid pathology. To precisely address the function of SHIP in T cells, we have generated mice with T cell-specific deletion of SHIP. In the absence of SHIP, we found no differences in thymic selection or in the activation state and numbers of regulatory T cells in the periphery. In contrast, SHIP-deficient T cells do not skew efficiently to Th2 in vitro. Mice with T cell-specific deletion of SHIP show poor antibody responses on Alum/NP-CGG immunization and diminished Th2 cytokine production when challenged with Schistosoma mansoni eggs. The failure to skew to Th2 responses may be the consequence of increased basal levels of the Th1-associated transcriptional factor T-bet, resulting from enhanced sensitivity to cytokine-mediated T-bet induction. SHIP-deficient CD8+ cells show enhanced cytotoxic responses, consistent with elevated T-bet levels in these cells. Overall our experiments indicate that in T cells SHIP negatively regulates cytokine-mediated activation in a way that allows effective Th2 responses and limits T cell cytotoxicity.
Autoimmunity | 2007
Tatyana N. Tarasenko; Jonathan A. Dean; Silvia Bolland
Antibodies are secreted to recognize and in some cases directly neutralize pathogens. Another important means by which they are essential components of the immune system is through binding to Fc receptors. Effector responses triggered by antibody binding of Fc receptors affect a host of important cellular responses such as phagocytosis, inflammatory cytokine release, antigen presentation, and regulation of humoral responses. A crucial check on this antibody-mediated signal is through the inhibitory receptor, FcγRIIB. In this review we discuss how dysregulation of FcγRIIB can result in a lowered threshold for autoimmunity in mice and humans. We close with a discussion of the potential for applying these findings to immunotherapy.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Michael Waisberg; Tatyana N. Tarasenko; Brandi K. Vickers; Bethany Scott; Lisa C. Willcocks; Alvaro Molina-Cruz; Matthew A. Pierce; Chiung Yu Huang; Fernando Torres-Velez; Kenneth Smith; Carolina Barillas-Mury; Louis H. Miller; Susan K. Pierce; Silvia Bolland
Plasmodium falciparum has exerted tremendous selective pressure on genes that improve survival in severe malarial infections. Systemic lupus erythematosus (SLE) is an autoimmune disease that is six to eight times more prevalent in women of African descent than in women of European descent. Here we provide evidence that a genetic susceptibility to SLE protects against cerebral malaria. Mice that are prone to SLE because of a deficiency in FcγRIIB or overexpression of Toll-like receptor 7 are protected from death caused by cerebral malaria. Protection appears to be by immune mechanisms that allow SLE-prone mice better to control their overall inflammatory responses to parasite infections. These findings suggest that the high prevalence of SLE in women of African descent living outside of Africa may result from the inheritance of genes that are beneficial in the immune control of cerebral malaria but that, in the absence of malaria, contribute to autoimmune disease.
Journal of Immunology | 2008
Tatyana N. Tarasenko; Hemanta K. Kole; Silvia Bolland
FcγR2B-deficient mice develop autoantibodies and glomerulonephritis with a pathology closely resembling human lupus when on the C57BL/6 (B6) background. The same mutation on the BALB/c background does not lead to spontaneous disease, suggesting differences in lupus susceptibility between the BALB/c and B6 strains. An F2 genetic analysis from a B6/BALB cross identified regions from the B6 chromosomes 12 and 17 with positive linkage for IgG autoantibodies. We have generated a congenic strain that contains the suppressor allele from the BALB/c chromosome 12 centromeric region (sbb2a) in an otherwise B6.FcγR2B−/− background. None of the B6.FcγR2B−/−sbb2a/a mice tested have developed IgG autoantibodies in the serum or autoimmune pathology. Mixed bone marrow reconstitution experiments indicate that sbb2a is expressed in non-B bone marrow-derived cells and acts in trans. sbb2a does not alter L chain editing frequencies of DNA Abs in the 3H9H/56R H chain transgenic mice, but the level of IgG2a anti-DNA Abs in the serum is reduced. Thus, sbb2a provides an example of a non-MHC lupus-suppressor locus that protects from disease by restricting the production of pathogenic IgG isotypes even in backgrounds with inefficient Ab editing checkpoints.
Journal of Leukocyte Biology | 2015
Tatyana N. Tarasenko; Julio Gomez-Rodriguez; Peter J. McGuire
ASS1 is a cytosolic enzyme that plays a role in the conversion of citrulline to arginine. In human and mouse tissues, ASS1 protein is found in several components of the immune system, including the thymus and T cells. However, the role of ASS1 in these tissues remains to be defined. Considerable attention has been focused recently on the role of metabolism in T cell differentiation and function. Based on the expression of ASS1 in the immune system, we hypothesized that ASS1 deficiency would result in T cell defects. To evaluate this question, we characterized immune function in hypomorphic fold/fold mice. Analysis of splenic T cells by flow cytometry showed a marked reduction in T cell numbers with normal expression of activation surface markers. Gene therapy correction of liver ASS1 to enhance survival resulted in a partial recovery of splenic T cells for characterization. In vitro and in vivo studies demonstrated the persistence of the ASS1 enzyme defect in T cells and abnormal T cell differentiation and function. Overall, our work suggests that ASS1 plays a role in T cell function, and deficiency produces primary immune dysfunction. In addition, these data suggest that patients with ASS1 deficiency (citrullinemia type I) may have T cell dysfunction.
Journal of Immunology | 2016
Sasha E. Larsen; Bilenkin A; Tatyana N. Tarasenko; Swadhinya Arjunaraja; Stinson; McGuire Pj; Andrew L. Snow
Restimulation-induced cell death (RICD) regulates immune responses by restraining effector T cell expansion and limiting nonspecific damage to the host. RICD is triggered by re-engagement of the TCR on a cycling effector T cell, resulting in apoptosis. It remains unclear how RICD sensitivity is calibrated in T cells derived from different individuals or subsets. In this study we show that aerobic glycolysis strongly correlates with RICD sensitivity in human CD8+ effector T cells. Reducing glycolytic activity or glucose availability rendered effector T cells significantly less sensitive to RICD. We found that active glycolysis specifically facilitates the induction of proapoptotic Fas ligand upon TCR restimulation, accounting for enhanced RICD sensitivity in highly glycolytic T cells. Collectively, these data indicate that RICD susceptibility is linked to metabolic reprogramming, and that switching back to metabolic quiescence may help shield T cells from RICD as they transition into the memory pool.
Biochimica et Biophysica Acta | 2015
Tatyana N. Tarasenko; Larry N. Singh; Milani Chatterji-Len; Patricia M. Zerfas; Kristina Cusmano-Ozog; Peter J. McGuire
In response to infection, patients with inborn errors of metabolism may develop a functional deterioration termed metabolic decompensation. The biochemical hallmarks of this disruption of metabolic homeostasis are disease specific and may include acidosis, hyperammonemia or hypoglycemia. In a model system previously published by our group, we noted that during influenza infection, mice displayed a depression in hepatic mitochondrial enzymes involved in nitrogen metabolism. Based on these findings, we hypothesized that this normal adaptation may extend to other metabolic pathways, and as such, may impact various inborn errors of metabolism. Since the liver is a critical organ in inborn errors of metabolism, we carried out untargeted metabolomic profiling of livers using mass spectrometry in C57Bl/6 mice infected with influenza to characterize metabolic adaptation. Pathway analysis of metabolomic data revealed reductions in CoA synthesis, and long chain fatty acyl CoA and carnitine species. These metabolic adaptations coincided with a depression in hepatic long chain β-oxidation mRNA and protein. To our surprise, the metabolic changes observed occurred in conjunction with a hepatic innate immune response, as demonstrated by transcriptional profiling and flow cytometry. By employing an immunomodulation strategy to deplete Kupffer cells, we were able to improve the expression of multiple genes involved in β-oxidation. Based on these findings, we are the first to suggest that the role of the liver as an immunologic organ is central in the pathophysiology of hepatic metabolic decompensation in inborn errors of metabolism due to respiratory viral infection.
Molecular Genetics and Metabolism | 2017
Tatyana N. Tarasenko; Peter J. McGuire
Metabolic decompensation in inborn errors of metabolism (IEM) is characterized by a rapid deterioration in metabolic status leading to life-threatening biochemical perturbations (e.g. hypoglycemia, hyperammonemia, acidosis, organ failure). Infection is the major cause of metabolic decompensation in patients with IEM. We hypothesized that activation of the immune system during infection leads to further perturbations in end-organ metabolism resulting in increased morbidity. To address this, we established model systems of metabolic decompensation due to infection. Using these systems, we have described the pathologic mechanisms of metabolic decompensation as well as changes in hepatic metabolic reserve associated with infection. First and foremost, our studies have demonstrated that the liver experiences a significant local innate immune response during influenza infection that modulates hepatic metabolism. Based on these findings, we are the first to suggest that the role of the liver as a metabolic and immunologic organ is central in the pathophysiology of metabolic decompensation due to infection in IEM. The dual function of the liver as a major metabolic regulator and a lymphoid organ responsible for immunosurveillance places this organ at risk for hepatotoxicity. Mobilization of hepatic reserve and the regenerative capacity of a healthy liver compensates for this calculated risk. However, activation of the hepatic innate immune system may be deleterious in IEM. Based on this assertion, strategies aimed at modulating the innate immune response may be a viable target for intervention in the treatment of hepatic metabolic decompensation.
PLOS ONE | 2015
Tatyana N. Tarasenko; Odrick R. Rosas; Larry N. Singh; Kara Kristaponis; Hilary Vernon; Peter J. McGuire
Ornithine transcarbamylase deficiency (OTCD, OMIM# 311250) is an inherited X-linked urea cycle disorder that is characterized by hyperammonemia and orotic aciduria. In this report, we describe a new animal model of OTCD caused by a spontaneous mutation in the mouse Otc gene (c.240T>A, p.K80N). This transversion in exon 3 of ornithine transcarbamylase leads to normal levels of mRNA with low levels of mature protein and is homologous to a mutation that has also been described in a single patient affected with late-onset OTCD. With higher residual enzyme activity, spf-J were found to have normal plasma ammonia and orotate. Baseline plasma amino acid profiles were consistent with mild OTCD: elevated glutamine, and lower citrulline and arginine. In contrast to WT, spf-J displayed baseline elevations in cerebral amino acids with depletion following immune challenge with polyinosinic:polycytidylic acid. Our results indicate that the mild spf-J mutation constitutes a new mouse model that is suitable for mechanistic studies of mild OTCD and the exploration of cerebral pathophysiology during acute decompensation that characterizes proximal urea cycle dysfunction in humans.