Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tatyana V. Taksir is active.

Publication


Featured researches published by Tatyana V. Taksir.


Molecular Therapy | 2008

Delivery of AAV-IGF-1 to the CNS extends survival in ALS mice through modification of aberrant glial cell activity.

James Dodge; Amanda M. Haidet; Wendy Yang; Marco A. Passini; Mark Hester; Jennifer Clarke; Eric M. Roskelley; Christopher M. Treleaven; Liza Rizo; Heather Martin; Soo Hyun Kim; Rita Wen Kaspar; Tatyana V. Taksir; Denise Griffiths; Seng H. Cheng; Lamya S. Shihabuddin; Brian K. Kaspar

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of the motor system. Recent work in rodent models of ALS has shown that insulin-like growth factor-1 (IGF-1) slows disease progression when delivered at disease onset. However, IGF-1s mechanism of action along the neuromuscular axis remains unclear. In this study, symptomatic ALS mice received IGF-1 through stereotaxic injection of an IGF-1-expressing viral vector to the deep cerebellar nuclei (DCN), a region of the cerebellum with extensive brain stem and spinal cord connections. We found that delivery of IGF-1 to the central nervous system (CNS) reduced ALS neuropathology, improved muscle strength, and significantly extended life span in ALS mice. To explore the mechanism of action of IGF-1, we used a newly developed in vitro model of ALS. We demonstrate that IGF-1 is potently neuroprotective and attenuates glial cell-mediated release of tumor necrosis factor-alpha (TNF-alpha) and nitric oxide (NO). Our results show that delivering IGF-1 to the CNS is sufficient to delay disease progression in a mouse model of familial ALS and demonstrate for the first time that IGF-1 attenuates the pathological activity of non-neuronal cells that contribute to disease progression. Our findings highlight an innovative approach for delivering IGF-1 to the CNS.


Molecular Therapy | 2010

AAV4-mediated Expression of IGF-1 and VEGF Within Cellular Components of the Ventricular System Improves Survival Outcome in Familial ALS Mice

James Dodge; Christopher M. Treleaven; Jonathan A. Fidler; Mark Hester; Amanda M. Haidet; Chalonda Handy; Meghan Rao; Amy Eagle; Jennifer C Matthews; Tatyana V. Taksir; Seng H. Cheng; Lamya S. Shihabuddin; Brian K. Kaspar

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by motor neuron cell death in the cortex, brainstem, and spinal cord. Extensive efforts have been made to develop trophic factor-based therapies to enhance motor neuron survival; however, achievement of adequate therapeutic delivery to all regions of the corticospinal tract has remained a significant challenge. Here, we show that adeno-associated virus serotype 4 (AAV4)-mediated expression of insulin-like growth factor-1 (IGF-1) or vascular endothelial growth factor (VEGF)-165 in the cellular components of the ventricular system including the ependymal cell layer, choroid plexus [the primary cerebrospinal fluid (CSF)-producing cells of the central nervous system (CNS)] and spinal cord central canal leads to trophic factor delivery throughout the CNS, delayed motor decline and a significant extension of survival in SOD1(G93A) transgenic mice. Interestingly, when IGF-1- and VEGF-165-expressing AAV4 vectors were given in combination, no additional benefit in efficacy was observed suggesting that these trophic factors are acting on similar signaling pathways to modestly slow disease progression. Consistent with these findings, experiments conducted in a recently described in vitro cell culture model of ALS led to a similar result, with both IGF-1 and VEGF-165 providing significant motor neuron protection but in a nonadditive fashion. These findings support the continued investigation of trophic factor-based therapies that target the CNS as a potential treatment of ALS.


The Journal of Neuroscience | 2004

Intracerebral Transplantation of Adult Mouse Neural Progenitor Cells into the Niemann-Pick-A Mouse Leads to a Marked Decrease in Lysosomal Storage Pathology

Lamya S. Shihabuddin; S. Numan; Michael R. Huff; James Dodge; J. Clarke; Shannon L. Macauley; Wendy Yang; Tatyana V. Taksir; G. Parsons; Marco A. Passini; Fred H. Gage; Gregory R. Stewart

Niemann-Pick disease is caused by a genetic deficiency in acid sphingomyelinase (ASM) leading to the intracellular accumulation of sphingomyelin and cholesterol in lysosomes. In the present study, we evaluated the effects of direct intracerebral transplantation of neural progenitor cells (NPCs) on the brain storage pathology in the ASM knock-out (ASMKO) mouse model of Type A Niemann-Pick disease. NPCs derived from adult mouse brain were genetically modified to express human ASM (hASM) and were transplanted into multiple regions of the ASMKO mouse brain. Transplanted NPCs survived, migrated, and showed region-specific differentiation in the host brain up to 10 weeks after transplantation (the longest time point examined). In vitro, gene-modified NPCs expressed up to 10 times more and released five times more ASM activity into the culture media compared with nontransduced NPCs. In vivo, transplanted cells expressed hASM at levels that were barely detectable by immunostaining but were sufficient for uptake and cross-correction of host cells, leading to reversal of distended lysosomal pathology and regional clearance of sphingomyelin and cholesterol storage. Within the host brain, the area of correction closely overlapped with the distribution of the hASM-modified NPCs. No correction of pathology occurred in brain regions that received transplants of nontransduced NPCs. These results indicate that the presence of transduced NPCs releasing low levels of hASM within the ASMKO mouse brain is necessary and sufficient to reverse lysosomal storage pathology. Potentially, NPCs may serve as a useful gene transfer vehicle for the treatment of CNS pathology in other lysosomal storage diseases and neurodegenerative disorders.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Combination brain and systemic injections of AAV provide maximal functional and survival benefits in the Niemann-Pick mouse.

Marco A. Passini; Jie Bu; Jonathan A. Fidler; Robin J. Ziegler; Joseph Foley; James Dodge; Wendy Yang; Jennifer Clarke; Tatyana V. Taksir; Denise Griffiths; Michael A. Zhao; Catherine R. O'Riordan; Edward H. Schuchman; Lamya S. Shihabuddin; Seng H. Cheng

Niemann-Pick disease (NPD) is caused by the loss of acid sphingomyelinase (ASM) activity, which results in widespread accumulation of undegraded lipids in cells of the viscera and CNS. In this study, we tested the effect of combination brain and systemic injections of recombinant adeno-associated viral vectors encoding human ASM (hASM) in a mouse model of NPD. Animals treated by combination therapy exhibited high levels of hASM in the viscera and brain, which resulted in near-complete correction of storage throughout the body. This global reversal of pathology translated to normal weight gain and superior recovery of motor and cognitive functions compared to animals treated by either brain or systemic injection alone. Furthermore, animals in the combination group did not generate antibodies to hASM, demonstrating the first application of systemic-mediated tolerization to improve the efficacy of brain injections. All of the animals treated by combination therapy survived in good health to an investigator-selected 54 weeks, whereas the median lifespans of the systemic-alone, brain-alone, or untreated ASM knockout groups were 47, 48, and 34 weeks, respectively. These data demonstrate that combination therapy is a promising therapeutic modality for treating NPD and suggest a potential strategy for treating disease indications that cause both visceral and CNS pathologies.


Human Gene Therapy | 2014

Silencing mutant huntingtin by adeno-associated virus-mediated RNA interference ameliorates disease manifestations in the YAC128 mouse model of Huntington's disease.

Lisa M. Stanek; Sergio Pablo Sardi; Bryan Mastis; Amy R. Richards; Christopher M. Treleaven; Tatyana V. Taksir; Kuma Misra; Seng H. Cheng; Lamya S. Shihabuddin

Huntingtons disease (HD) is a fatal autosomal dominant neurodegenerative disease caused by an increase in the number of polyglutamine residues in the huntingtin (Htt) protein. With the identification of the underlying basis of HD, therapies are being developed that reduce expression of the causative mutant Htt. RNA interference (RNAi) that seeks to selectively reduce the expression of such disease-causing agents is emerging as a potential therapeutic strategy for this and similar disorders. This study examines the merits of administering a recombinant adeno-associated viral (AAV) vector designed to deliver small interfering RNA (siRNA) that targets the degradation of the Htt transcript. The aim was to lower Htt levels and to correct the behavioral, biochemical, and neuropathological deficits shown to be associated with the YAC128 mouse model of HD. Our data demonstrate that AAV-mediated RNAi is effective at transducing greater than 80% of the cells in the striatum and partially reducing the levels (~40%) of both wild-type and mutant Htt in this region. Concomitant with these reductions are significant improvements in behavioral deficits, reduction of striatal Htt aggregates, and partial correction of the aberrant striatal transcriptional profile observed in YAC128 mice. Importantly, a partial reduction of both the mutant and wild-type Htt levels is not associated with any notable overt neurotoxicity. Collectively, these results support the continued development of AAV-mediated RNAi as a therapeutic strategy for HD.


Experimental Neurology | 2009

Intracerebroventricular infusion of acid sphingomyelinase corrects CNS manifestations in a mouse model of Niemann-Pick A disease.

James Dodge; Jennifer Clarke; Christopher M. Treleaven; Tatyana V. Taksir; Denise Griffiths; Wendy Yang; Jonathan A. Fidler; Marco A. Passini; Kenneth P. Karey; Edward H. Schuchman; Seng H. Cheng; Lamya S. Shihabuddin

Niemann-Pick A (NPA) disease is a lysosomal storage disorder (LSD) caused by a deficiency in acid sphingomyelinase (ASM) activity. Previously, we showed that the storage pathology in the ASM knockout (ASMKO) mouse brain could be corrected by intracerebral injections of cell, gene and protein based therapies. However, except for instances where distal areas were targeted with viral vectors, correction of lysosomal storage pathology was typically limited to a region within a few millimeters from the injection site. As NPA is a global neurometabolic disease, the development of delivery strategies that maximize the distribution of the enzyme throughout the CNS is likely necessary to arrest or delay progression of the disease. To address this challenge, we evaluated the effectiveness of intracerebroventricular (ICV) delivery of recombinant human ASM into ASMKO mice. Our findings showed that ICV delivery of the enzyme led to widespread distribution of the hydrolase throughout the CNS. Moreover, a significant reduction in lysosomal accumulation of sphingomyelin was observed throughout the brain and also within the spinal cord and viscera. Importantly, we demonstrated that repeated ICV infusions of ASM were effective at improving the disease phenotype in the ASMKO mouse as indicated by a partial alleviation of the motor abnormalities. These findings support the continued exploration of ICV delivery of recombinant lysosomal enzymes as a therapeutic modality for LSDs such as NPA that manifests substrate accumulation within the CNS.


Human Gene Therapy | 2008

Ability of Adeno-Associated Virus Serotype 8-Mediated Hepatic Expression of Acid α-Glucosidase to Correct the Biochemical and Motor Function Deficits of Presymptomatic and Symptomatic Pompe Mice

Robin J. Ziegler; Scott D. Bercury; Jonathan A. Fidler; Michael A. Zhao; Joseph Foley; Tatyana V. Taksir; Susan Ryan; Bradley L. Hodges; Ronald K. Scheule; Lamya S. Shihabuddin; Seng H. Cheng

The availability of a murine model of Pompe disease has enabled an evaluation of the relative merits of various therapeutic paradigms, including gene therapy. We report here that administration of a recombinant adeno-associated virus serotype 8 (AAV8) vector (AAV8/DC190-GAA) encoding human acid alpha-glucosidase (GAA) into presymptomatic Pompe mice resulted in nearly complete correction of the lysosomal storage of glycogen in all the affected muscles. A relatively high dose of AAV8/DC190-GAA was necessary to attain a threshold level of GAA for inducing immunotolerance to the expressed enzyme and for correction of muscle function, coordination, and strength. Administration of AAV8/DC190-GAA into older Pompe mice with overt disease manifestations was also effective at correcting the lysosomal storage abnormality. However, these older mice exhibited only marginal improvements in motor function and no improvement in muscle strength. Examination of histologic sections showed evidence of skeletal muscle degeneration and fibrosis in aged Pompe mice whose symptoms were abated or rescued by early but not late treatment with AAV8/DC190-GAA. These results suggest that AAV8-mediated hepatic expression of GAA was effective at addressing the biochemical and functional deficits in Pompe mice. However, early therapeutic intervention is required to maintain significant muscle function and should be an important consideration in the management and treatment of Pompe disease.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Metabolic signatures of amyotrophic lateral sclerosis reveal insights into disease pathogenesis

James Dodge; Christopher M. Treleaven; Jonathan A. Fidler; Thomas J. Tamsett; Channa Bao; Michelle Searles; Tatyana V. Taksir; Kuma Misra; Richard L. Sidman; Seng H. Cheng; Lamya S. Shihabuddin

Metabolic dysfunction is an important modulator of disease course in amyotrophic lateral sclerosis (ALS). We report here that a familial mouse model (transgenic mice over-expressing the G93A mutation of the Cu/Zn superoxide dismutase 1 gene) of ALS enters a progressive state of acidosis that is associated with several metabolic (hormonal) alternations that favor lipolysis. Extensive investigation of the major determinants of H+ concentration (i.e., the strong ion difference and the strong ion gap) suggests that acidosis is also due in part to the presence of an unknown anion. Consistent with a compensatory response to avert pathological acidosis, ALS mice harbor increased accumulation of glycogen in CNS and visceral tissues. The altered glycogen is associated with fluctuations in lysosomal and neutral α-glucosidase activities. Disease-related changes in glycogen, glucose, and α-glucosidase activity are also found in spinal cord tissue samples of autopsied patients with ALS. Collectively, these data provide insights into the pathogenesis of ALS as well as potential targets for drug development.


Experimental Neurology | 2011

Relationship between neuropathology and disease progression in the SOD1G93A ALS mouse

Wendy Yang; Richard L. Sidman; Tatyana V. Taksir; Christopher M. Treleaven; Jonathan A. Fidler; Seng H. Cheng; James Dodge; Lamya S. Shihabuddin

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of upper and lower motor neurons. However, recent reports suggest an active role of non-neuronal cells in the pathogenesis of the disease. Here, we examined quantitatively the temporal development of neuropathologic features in the brain and spinal cord of a mouse model of ALS (SOD1(G93A)). Four phases of the disease were studied in both male and female SOD1(G93A) mice: presymptomatic (PRE-SYM), symptomatic (SYM), endstage (ES) and moribund (MB). Compared to their control littermates, SOD1(G93A) mice showed an increase in astrogliosis in the motor cortex, spinal cord and motor trigeminal nucleus in the SYM phase that worsened progressively in ES and MB animals. Associated with this increase in astrogliosis was a concomitant increase in motor neuron cell death in the spinal cord and motor trigeminal nucleus in both ES and MB mice, as well as in the ventrolateral thalamus in MB animals. In contrast, microglial activation was significantly increased in all the same regions but only when the mice were in the MB phase. These results suggest that astrogliosis preceded or occurred concurrently with neuronal degeneration whereas prominent microgliosis was evident later (MB stage), after significant motor neuron degeneration had occurred. Hence, our findings support a role for astrocytes in modulating the progression of non-cell autonomous degeneration of motor neurons, with microglia playing a role in clearing degenerating neurons.


Experimental Neurology | 2007

Intraparenchymal injections of acid sphingomyelinase results in regional correction of lysosomal storage pathology in the Niemann-Pick A mouse

Wendy Yang; James Dodge; Marco A. Passini; Tatyana V. Taksir; Denise Griffiths; Edward H. Schuchman; Seng H. Cheng; Lamya S. Shihabuddin

Niemann-Pick A disease (NPD-A) is caused by a deficiency of acid sphingomyelinase (ASM) leading to the intracellular accumulation of sphingomyelin and cholesterol in lysosomes. We evaluated the effects of direct intraparenchymal brain injections of purified recombinant human ASM (hASM) at correcting the storage pathology in a mouse model of NPD-A (ASMKO). Different doses (0.1 ng to 10 mug of hASM) were injected into the right hemisphere of the hippocampus and thalamus of 12- to 14-week-old ASMKO mice. Immunohistochemical analysis after 1 week indicated that animals treated with greater than 1 mug hASM/site showed detectable levels of enzyme around the injected regions. However, localized clearance of sphingomyelin and cholesterol storage were observed in animals administered lower doses of enzyme, starting at 100 ng hASM/site. Areas of correction were also noted at distal sites such as in the contralateral hemispheres. Indications of storage re-accumulation were seen after 2 weeks post-injection. Injections of hASM did not cause any significant cell infiltration, astrogliosis, or microglial activation. These results indicate that intraparenchymal injection of hASM is associated with minimal toxicity and can lead to regional reductions in storage pathology in the ASMKO mouse.

Collaboration


Dive into the Tatyana V. Taksir's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wendy Yang

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Edward H. Schuchman

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge