Tebikie Wondimagegn
University of Tromsø
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tebikie Wondimagegn.
Journal of Inorganic Biochemistry | 2002
Erik Steene; Tebikie Wondimagegn; Abhik Ghosh
Soret-excited resonance Raman (RR) spectra are reported for the Mn(III) and Mn(IV)Cl derivatives of meso-tris(p-(trifluoromethyl)phenyl)corrole, H(3)T(p-CF(3)-P)Cor, and the Mn(III) derivative of beta-octabromo-meso-tris(p-(trifluoromethyl)phenyl)corrole, H(3)Br(8)T(p-CF(3)-P)Cor. Three high-frequency bands in the RR spectrum of Mn(III)[T(p-CF(3)-P)Cor] at 1465, 1524 and 1615 cm(-1) appear to upshift to 1486, 1528 and 1620 cm(-1) for Mn(IV)[T(p-CF(3)-P)Cor]Cl. This suggests that the electronic character of the corrole ligand is significantly different for these two compounds, which is consistent with electrochemical evidence for partial radical character of the corrole ligand for Mn(IV)[T(p-CF(3)-P)Cor]Cl but not for Mn(III)[T(p-CF(3)-P)Cor]. The observed upshifts are also consistent with DFT calculations showing a shortening of some of the relevant bonds in the Mn(IV)Cl derivative relative to the Mn(III) derivative. The results raise the possibility of an extensive parallelism between the electronic structures of high-valent metallocorroles and metalloporphyrins. Three high-frequency bands in the RR spectrum of Mn(III)[T(p-CF(3)-P)Cor] at 1331, 1465 and 1545 cm(-1) appear to downshift to 1320, 1457 and 1537 cm(-1) for Mn(III)[Br(8)T(p-CF(3)-P)Cor]. This is consistent with the suspected longer carbon-carbon bond lengths in the brominated corrole macrocycle.
Current Opinion in Chemical Biology | 2001
Abhik Ghosh; Tebikie Wondimagegn; Hege Ryeng
What stabilizes the unique Ni(I) state of the active form of coenzyme F(430) and of methylcoenzyme M reductase, the enzyme responsible for the last methane-evolving step of biological methanogenesis? A survey of F(430) model compounds suggests that the monoanionic nature of the F(430) ligand goes a long way toward explaining the stability of Ni(I) F(430). Second, nature appears to have manipulated the stereochemistry of the macrocycle, particularly that of the 12- and 13- substituents, so that the cofactor is sterically constrained against ruffling and forced to adopt a relatively planar conformation with long Ni--N distances. Third, the carbonyl substituent at the 15-meso position electronically stabilizes the Ni(I) state of the cofactor. With regard to the mechanism of methylcoenzyme M reductase, the most reasonable mechanism, in our opinion, involves a Ni(I)-mediated homolytic cleavage of the S--CH(3) bond in methylcoenzyme M, followed immediately by the quenching of the methyl radical by coenzyme B (a thiol) to produce methane.
Journal of Inorganic Biochemistry | 2000
Abhik Ghosh; Tebikie Wondimagegn; Emmanuel Gonzalez; Ingar Halvorsen
Nonlocal density functional calculations with full geometry optimization have been carried out on the low-lying electronic states of oxidized nickel porphyrins. For [NiIII(P)(Py)2]+, the ground state corresponds to a t2g6(z2)1 configuration and the t2g6(x2-y2)1 configuration is 0.43 eV higher in energy. In contrast, the ground state of [NiIII(P)(CN)2]- corresponds to a t2g6(x2-y2)1 configuration, the t2g6(z2)1 configuration being 0.96 eV higher in energy. The results are consistent with EPR spectroscopic results on the TPP analogs of these complexes. For [Ni(P)(Py)2]+, the a2u- and a1u-type Ni(II) porphyrin cation radical states are higher in energy by 0.63 and 1.23 eV, respectively, relative to the t2g6(z2)1 Ni(III) ground state. The Ni-N(Porphyrin) distance is significantly shorter in [NiIII(P)(Py)2]+ (196 pm) than in [NiIII(P)(CN)2]- (206 pm), which is consistent with the ruffled and planar macrocycle conformations, respectively, in the two complexes.
Journal of Physical Chemistry B | 2008
Jeanet Conradie; Tebikie Wondimagegn; Abhik Ghosh
Density functional theory (DFT) calculations, regardless of the exchange-correlation functional, have long failed to reproduce the observed dz2(1) ground state of the [NiIII(TtBuP)(CN)2]- anion (where TtBuP is the strongly ruffled tetra(tbutyl)porphyrin ligand), predicting instead a dx2-y2(1) ground state. Normally, such failures are associated with DFT calculations on spin states of different multiplicity, which is not the case here. The calculations reported here strongly suggest that the problem does not lie with DFT. Instead environmental factors need to be taken into account, such as counterions and solvents. Counterions such as K+ placed against the cyanide nitrogens and polar solvents both result in a dz2(1) ground state, thus finally reconciling theory and experiment.
Journal of the American Chemical Society | 2002
Ingar H. Wasbotten; Tebikie Wondimagegn; Abhik Ghosh
Journal of Physical Chemistry B | 2001
Abhik Ghosh; Ingar Halvorsen; Henning J. Nilsen; Erik Steene; Tebikie Wondimagegn; Renate Lie; Eric Van Caemelbecke; Ning Guo; Zhongping Ou; Karl M. Kadish
Journal of Physical Chemistry B | 1998
Abhik Ghosh; Tebikie Wondimagegn; Henning J. Nilsen
Journal of the American Chemical Society | 2000
Abhik Ghosh; Tebikie Wondimagegn
Journal of the American Chemical Society | 2001
Tebikie Wondimagegn; Abhik Ghosh
Journal of the American Chemical Society | 2001
Tebikie Wondimagegn; Abhik Ghosh