Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ted D. Hoyda is active.

Publication


Featured researches published by Ted D. Hoyda.


The Neuroscientist | 2008

The Area Postrema: A Brain Monitor and Integrator of Systemic Autonomic State

Christopher J. Price; Ted D. Hoyda; Alastair V. Ferguson

The area postrema is a medullary structure lying at the base of the fourth ventricle. The area postremas privileged location outside of the blood-brain barrier make this sensory circumventricular organ a vital player in the control of autonomic functions by the central nervous system. By virtue of its lack of tight junctions between endothelial cells in this densely vascularized structure and the presence of fenestrated capillaries, peptide and other physiological signals borne in the blood have direct access to neurons that project to brain areas with important roles in the autonomic control of many physiological systems, including the cardiovascular system and systems controlling feeding and metabolism. However, the area postrema is not simply a conduit through which signals flow into the brain, but it is now being recognized as the initial site of integration for these signals as they enter the circuitry of the central nervous system. NEUROSCIENTIST 14(2):182—194, 2008. DOI: 10.1177/1073858407311100


The Journal of Neuroscience | 2006

Area postrema neurons are modulated by the adipocyte hormone adiponectin.

Mark Fry; Pauline M. Smith; Ted D. Hoyda; Marnie Duncan; Rexford S. Ahima; Keith A. Sharkey; Alastair V. Ferguson

Adiponectin is an adipocyte-derived peptide hormone involved in energy homeostasis and the pathogenesis of obesity, including hypertension. Area postrema (AP) lacks a blood–brain barrier and is a critical homeostatic integration center for humoral and neural signals. Here we investigate the role of AP in adiponectin signaling. We show that rat AP expresses AdipoR1 and AdipoR2 adiponectin receptor mRNA. We used current-clamp electrophysiology to investigate whether adiponectin influenced membrane properties of AP neurons and found that ∼60% of rat AP neurons tested were sensitive to adiponectin. Additional electrophysiology experiments coupled with single-cell reverse transcription-PCR indicated that all neurons that expressed both subtypes of receptor were sensitive to adiponectin, whereas neurons expressing only one subtype were predominantly insensitive. Last, microinjection of adiponectin into AP caused significant increases in arterial blood pressure, with no change in heart rate, suggesting that adiponectin acts at AP to provide a possible link between control of energy homeostasis and cardiovascular function.


Journal of Neuroendocrinology | 2007

Nesfatin-1 Influences the Excitability of Paraventricular Nucleus Neurones

Christopher J. Price; Ted D. Hoyda; Willis K. Samson; Alastair V. Ferguson

Nesfatin‐1 is a newly‐discovered satiety peptide found in several nuclei of the hypothalamus, including the paraventricular nucleus. To begin to understand the physiological mechanisms underlying these satiety‐inducing actions, we examined the effects of nesfatin‐1 on the excitability of neurones in the paraventricular nucleus. Whole‐cell current‐clamp recordings from rat paraventricular nucleus neurones showed nesfatin‐1 to have either hyperpolarising or depolarising effects on the majority of neurones tested. Both types of response were observed in neurones irrespective of classification based on electrophysiological fingerprint (magnocellular, neuroendocrine or pre‐autonomic) or molecular phenotype (vasopressin, oxytocin, corticotrophin‐releasing hormone, thyrotrophin‐releasing hormone or vesicular glutamate transporter), determined using single cell reverse transcription‐poylmerase chain reaction. Consequently, we provide the first evidence that this peptide, which is produced in the paraventricular nucleus, has effects on the membrane potential of a large proportion of different subpopulations of neurones located in this nucleus, and therefore identify nesfatin‐1 as a potentially important regulator of paraventricular nucleus output.


Journal of Biological Chemistry | 2008

Neuronostatin encoded by the somatostatin gene regulates neuronal, cardiovascular, and metabolic functions.

Willis K. Samson; Jian Zhang; Orna Avsian-Kretchmer; Kai Cui; Gina L. C. Yosten; Cindy Klein; Rong-Ming Lyu; Yong Xiong Wang; Xiang Qun Chen; Jun Yang; Christopher J. Price; Ted D. Hoyda; Alastair V. Ferguson; Xiao-bin Yuan; Jaw Kang Chang; Aaron J. W. Hsueh

Somatostatin is important in the regulation of diverse neuroendocrine functions. Based on bioinformatic analyses of evolutionarily conserved sequences, we predicted another peptide hormone in pro-somatostatin and named it neuronostatin. Immuno-affinity purification allowed the sequencing of an amidated neuronostatin peptide of 13 residues from porcine tissues. In vivo treatment with neuronostatin induced c-Fos expression in gastrointestinal tissues, anterior pituitary, cerebellum, and hippocampus. In vitro treatment with neuronostatin promoted the migration of cerebellar granule cells and elicited direct depolarizing actions on paraventricular neurons in hypothalamic slices. In a gastric tumor cell line, neuronostatin induced c-Fos expression, stimulated SRE reporter activity, and promoted cell proliferation. Furthermore, intracerebroventricular treatment with neuronostatin increased blood pressure but suppressed food intake and water drinking. Our findings demonstrate diverse neuronal, neuroendocrine, and cardiovascular actions of a somatostatin gene-encoded hormone and provide the basis to investigate the physiological roles of this endogenously produced brain/gut peptide.


Experimental Biology and Medicine | 2007

Making Sense of It: Roles of the Sensory Circumventricular Organs in Feeding and Regulation of Energy Homeostasis

Mark Fry; Ted D. Hoyda; Alastair V. Ferguson

Obesity is associated with significant health risks including stroke and heart disease. The prevalence of obesity has dramatically increased over the past 20 years. Although the development of obesity is clearly related to changing lifestyles, the central nervous system plays a key role in regulation of energy balance. To develop effective strategies for treating obesity, we must gain a clearer understanding of the neuro-circuitry and signaling mechanisms involved. Toward this end, recent progress has been made in the understanding of the roles played by the sensory circumventricular organs (CVOs) of the brain. These areas lack the normal blood-brain barrier and thus act as transducers of signals between the blood, other centers in the brain, and the cerebrospinal fluid. This review focuses on the roles played by the sensory CVOs in detecting and responding to a number of signals that carry information regarding nutritional status, including cholecystokinin, amylin, ghrelin, peptide YY, pancreatic polypeptide, leptin, adiponectin, and glucose.


The Journal of Physiology | 2007

Adiponectin selectively inhibits oxytocin neurons of the paraventricular nucleus of the hypothalamus

Ted D. Hoyda; Mark Fry; Rexford S. Ahima; Alastair V. Ferguson

Adiponectin is an adipocyte derived hormone which acts in the brain to modulate energy homeostasis and autonomic function. The paraventricular nucleus of the hypothalamus (PVN) which plays a key role in controlling pituitary hormone secretion has been suggested to be a central target for adiponectin actions. A number of hormones produced by PVN neurons have been implicated in the regulation of energy homeostasis including oxytocin, corticotropin releasing hormone and thyrotropin releasing hormone. In the present study we investigated the role of adiponectin in controlling the excitability of magnocellular (MNC – oxytocin or vasopressin secreting) neurons within the PVN. Using RT‐PCR techniques we have shown expression of both adiponectin receptors in the PVN. Patch clamp recordings from MNC neurons in hypothalamic slices have also identified mixed (27% hyperpolarization, 42% depolarization) effects of adiponectin in modulating the excitability of the majority of MNC neurons tested. These effects are maintained when cells are placed in synaptic isolation using tetrodotoxin. Additionally we combined electrophysiological recordings with single cell RT‐PCR to examine the actions of adiponectin on MNC neurons which expressed oxytocin only, vasopressin only, or both oxytocin and vasopressin mRNA and assess the profile of receptor expression in these subgroups. Adiponectin was found to hyperpolarize 100% of oxytocin neurons tested (n= 6), while vasopressin cells, while all affected (n= 6), showed mixed responses. Further analysis indicates oxytocin neurons express both receptors (6/7) while vasopressin neurons express either both receptors (3/8) or one receptor (5/8). In contrast 6/6 oxytocin/vasopressin neurons were unaffected by adiponectin. Co‐expressing oxytocin and vasopressin neurons express neither receptor (4/6). The results presented in this study suggest that adiponectin plays specific roles in controlling the excitability oxytocin secreting neurons, actions which correlate with the current literature showing increased oxytocin secretion in the obese population.


Endocrinology | 2009

Adiponectin depolarizes parvocellular paraventricular nucleus neurons controlling neuroendocrine and autonomic function.

Ted D. Hoyda; Willis K. Samson; Alastair V. Ferguson

Adiponectin plays important roles in the control of energy homeostasis and autonomic function through peripheral and central nervous system actions. The paraventricular nucleus (PVN) of the hypothalamus is a primary site of neuroendocrine (NE) and autonomic integration, and, thus, a potential target for adiponectin actions. Here, we investigate actions of adiponectin on parvocellular PVN neurons. Adiponectin influenced the majority (65%) of parvocellular PVN neurons, depolarizing 47%, whereas hyperpolarizing 18% of neurons tested. Post hoc identification (single-cell RT-PCR) after recordings revealed that adiponectin depolarizes NE-CRH neurons, whereas intracerebroventricular injections of adiponectin in vivo caused increased plasma ACTH concentrations. Adiponectin also depolarized the majority of TRH neurons, however, NE-TRH neurons were unaffected, in accordance with in vivo experiments showing that intracerebroventricular adiponectin was without effect on plasma TSH. In addition, bath administration of adiponectin also depolarized both preautonomic TRH and oxytocin neurons. These results show that adiponectin acts in the central nervous system to coordinate NE and autonomic function through actions on specific functional groups of PVN neurons.


Brain Research | 2009

Adiponectin acts in the nucleus of the solitary tract to decrease blood pressure by modulating the excitability of neuropeptide Y neurons

Ted D. Hoyda; Pauline M. Smith; Alastair V. Ferguson

Adiponectin is an adipocyte derived hormone which acts in the CNS to control autonomic function, energy and cardiovascular homeostasis. Two 7-transmembrane domain receptors, AdipoR1 and AdipoR2, expressed in the hypothalamus and brainstem mediate the actions of adiponectin. The medullas nucleus of the solitary tract (NTS) is the primary viscerosensory integration site and an important nucleus in the regulation of cardiovascular function. Here we show the localization of both AdipoR1 and AdipoR2 mRNA in the NTS. We have investigated the consequences of receptor activation in response to exogenous application of adiponectin on cardiovascular (blood pressure and heart rate monitoring in vivo), and single neuron (whole cell current-clamp recordings in vitro) function. Microinjection of adiponectin in the medial NTS (mNTS) at the level of the area postrema resulted in a decrease in BP (mean AUC= -2055+/-648.1, n=5, mean maximum effect: -11.7+/-3.6 mm Hg) while similar commissural NTS (cNTS) microinjections were without effect. Patch clamp recordings from NTS neurons in a medullary slice preparation showed rapid (within 200 s of application) reversible (usually within 1000 s following washout) effects of adiponectin on the membrane potential of 62% of mNTS neurons tested (38/61). In 34% (n=21) of mNTS neurons adiponectin induced a depolarization of membrane potential (6.8+/-0.9 mV), while the remainder of mNTS cells influenced by adiponectin (n=17) hyperpolarized in response to this adipokine (-5.4+/-0.7 mV). Post-hoc single cell RT-PCR (ssRT-PCR) analysis of neurons showed that the majority of NPY mRNA positive mNTS neurons were depolarized by adiponectin (7/11), while 4 of these depolarized cells were also GAD67 positive. The results presented in this study suggest adiponectin acts in the NTS to control BP and suggest that such effects may occur as a direct result of the ability of this adipokine to modulate the excitability of discrete groups of neurons in the NTS. These studies identify the mNTS as a new CNS site which adiponectin may act to influence central autonomic processing.


International Journal of Obesity | 2009

Gastrointestinal hormone actions in the central regulation of energy metabolism: potential sensory roles for the circumventricular organs.

Ted D. Hoyda; Pauline M. Smith; Alastair V. Ferguson

A variety of circulating signals provide essential information to the central nervous system (CNS) regarding nutritional status. The gastrointestinal system produces many such molecules that are now known to have profound effects on feeding behavior and the control of metabolism as a consequence of their ability to regulate the neural circuitry involved in metabolic homeostasis. Although many of these substances have been suggested to directly access such brain centers, their lipophobic characteristics suggest that alternative mechanisms should be considered. In this paper, we consider one such alternative, namely, that a specialized group of CNS structures collectively known as the sensory circumventricular organs (CVOs), which are not protected by the normal blood–brain barrier, may play important roles in such blood to brain communications. Specifically, we review a developing literature that shows receptors for, and functional actions of, gastrointestinal hormones such as amylin, cholecystokinin, ghrelin and peptide YY in the area postrema and subfornical organ. Collectively, these observations suggest potentially significant roles for the sensory CVOs in the regulation of energy balance.


European Journal of Neuroscience | 2007

Prokineticin 2 depolarizes paraventricular nucleus magnocellular and parvocellular neurons

Erik A. Yuill; Ted D. Hoyda; Catharine C. Ferri; Qun-Yong Zhou; Alastair V. Ferguson

Blind whole‐cell patch‐clamp techniques were used to examine the effects of prokineticin 2 (PK2) on the excitability of magnocellular (MNC), parvocellular preautonomic (PA), and parvocellular neuroendocrine (NE) neurons within the hypothalamic paraventricular nucleus (PVN) of the rat. The majority of MNC neurons (76%) depolarized in response to 10 nm PK2, effects that were eliminated in the presence of tetrodotoxin (TTX). PK2 also caused an increase in excitatory postsynaptic potential (EPSP) frequency, a finding that was confirmed by voltage clamp recordings demonstrating increases in excitatory postsynaptic current (EPSC) frequency. The depolarizing effects of PK2 on MNC neurons were also abolished by kynurenic acid (KA), supporting the conclusion that the effects of PK2 are mediated by the activation of glutamate interneurons within the hypothalamic slice. PA (68%) and NE (67%) parvocellular neurons also depolarized in response to 10 nm PK2. However, in contrast to MNC neurons, these effects were maintained in TTX, indicating that PK2 directly affects PA and NE neurons. PK2‐induced depolarizations observed in PA and NE neurons were found to be concentration‐related and receptor mediated, as experiments performed in the presence of A1MPK1 (a PK2 receptor antagonist) abolished the effects of PK2 on these subpopulations of neurons. The depolarizing effects of PK2 on PA and NE neurons were also shown to be abolished by PD 98059 (a mitogen activated protein kinase (MAPK) inhibitor) suggesting that PK2 depolarizes PVN parvocellular neurons through a MAPK signalling mechanism. In combination, these studies have identified separate cellular mechanisms through which PK2 influences the excitability of different subpopulations of PVN neurons.

Collaboration


Dive into the Ted D. Hoyda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rexford S. Ahima

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge