Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ted L. Roush is active.

Publication


Featured researches published by Ted L. Roush.


Journal of Geophysical Research | 2001

Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results

Philip R. Christensen; Joshua L. Bandfield; Victoria E. Hamilton; Steven W. Ruff; Hugh H. Kieffer; Timothy N. Titus; M. C. Malin; Richard V. Morris; Melissa D. Lane; R. L. Clark; Bruce M. Jakosky; Michael T. Mellon; John C. Pearl; Barney J. Conrath; Michael D. Smith; R. T. Clancy; Ruslan O. Kuzmin; Ted L. Roush; Greg L. Mehall; Noel Gorelick; K. Bender; K. Murray; S. Dason; E. Greene; Steven H. Silverman; M.I. Greenfield

The Thermal Emission Spectrometer (TES) investigation on Mars Global Surveyor (MGS) is aimed at determining (1) the composition of surface minerals, rocks, and ices; (2) the temperature and dynamics of the atmosphere; (3) the properties of the atmospheric aerosols and clouds; (4) the nature of the polar regions; and (5) the thermophysical properties of the surface materials. These objectives are met using an infrared (5.8- to 50-μm) interferometric spectrometer, along with broadband thermal (5.1- to 150-μm) and visible/near-IR (0.3- to 2.9-μm) radiometers. The MGS TES instrument weighs 14.47 kg, consumes 10.6 W when operating, and is 23.6×35.5×40.0 cm in size. The TES data are calibrated to a 1-σ precision of 2.5−6×10−8 W cm−2 sr−1/cm−1, 1.6×10−6 W cm−2 sr−1, and ∼0.5 K in the spectrometer, visible/near-IR bolometer, and IR bolometer, respectively. These instrument subsections are calibrated to an absolute accuracy of ∼4×10−8 W cm−2 sr−1/cm−1 (0.5 K at 280 K), 1–2%, and ∼1–2 K, respectively. Global mapping of surface mineralogy at a spatial resolution of 3 km has shown the following: (1) The mineralogic composition of dark regions varies from basaltic, primarily plagioclase feldspar and clinopyroxene, in the ancient, southern highlands to andesitic, dominated by plagioclase feldspar and volcanic glass, in the younger northern plains. (2) Aqueous mineralization has produced gray, crystalline hematite in limited regions under ambient or hydrothermal conditions; these deposits are interpreted to be in-place sedimentary rock formations and indicate that liquid water was stable near the surface for a long period of time. (3) There is no evidence for large-scale (tens of kilometers) occurrences of moderate-grained (>50-μm) carbonates exposed at the surface at a detection limit of ∼10%. (4) Unweathered volcanic minerals dominate the spectral properties of dark regions, and weathering products, such as clays, have not been observed anywhere above a detection limit of ∼10%; this lack of evidence for chemical weathering indicates a geologic history dominated by a cold, dry climate in which mechanical, rather than chemical, weathering was the significant form of erosion and sediment production. (5) There is no conclusive evidence for sulfate minerals at a detection limit of ∼15%. The polar region has been studied with the following major conclusions: (1) Condensed CO2 has three distinct end-members, from fine-grained crystals to slab ice. (2) The growth and retreat of the polar caps observed by MGS is virtually the same as observed by Viking 12 Martian years ago. (3) Unique regions have been identified that appear to differ primarily in the grain size of CO2; one south polar region appears to remain as black slab CO2 ice throughout its sublimation. (4) Regional atmospheric dust is common in localized and regional dust storms around the margin and interior of the southern cap. Analysis of the thermophysical properties of the surface shows that (1) the spatial pattern of albedo has changed since Viking observations, (2) a unique cluster of surface materials with intermediate inertia and albedo occurs that is distinct from the previously identified low-inertia/bright and high-inertia/dark surfaces, and (3) localized patches of high-inertia material have been found in topographic lows and may have been formed by a unique set of aeolian, fluvial, or erosional processes or may be exposed bedrock.


The Astrophysical Journal | 1994

Composition and radiative properties of grains in molecular clouds and accretion disks

James B. Pollack; David J. Hollenbach; Steven V. W. Beckwith; D. P. Simonelli; Ted L. Roush; Wesley Fong

We define a model of the compositon and abundances of grains and gases in molecular cloud cores and accretion disks around young stars by employing a wide range of astronomical data and theory, the composition of primitive bodies in the solar system, and solar elemental abundances. In the coldest portions of these objects, we propose that the major grain species include olivine (Fe, Mg, 2SiO4), orthopyroxene (Fe, Mg, SiO3), volatile and refractory organics, water ice, troilite (FeS), and metallic iron. This compositional model differs from almost all previous models of the interstellar medium (ISM) by having organics as the major condensed C species, rather than graphite; by including troilite as a major grain species; and by specifying the mineralogical composition of the condensed silicates. Using a combination of laboratory measurements of optical constants and asymptotic theory, we derive values of the real and imaginary indices of refraction of these grain species over a wavelength range that runs from the vacuum ultraviolet (UV) to the radio domain. The above information on grain properties is used to estimate the Rosseland mean opacity of the grains and their monochromatic opacity.


Nature | 2008

Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument

John F. Mustard; Scott L. Murchie; Shannon Pelkey; B. L. Ehlmann; Ralph E. Milliken; John A. Grant; Jean-Pierre Bibring; F. Poulet; Jack B. Bishop; E. Z. Noe Dobrea; L. H. Roach; F. P. Seelos; Raymond E. Arvidson; Sandra Margot Wiseman; Robert O. Green; C. D. Hash; David Carl Humm; Erick R. Malaret; J. A. McGovern; Kimberly D. Seelos; Thomas E. Clancy; Roger N. Clark; D. J. Des Marais; Noam R. Izenberg; Amy T. Knudson; Yves Langevin; Terry Z. Martin; Patrick C. McGuire; Richard V. Morris; Mark S. Robinson

Phyllosilicates, a class of hydrous mineral first definitively identified on Mars by the OMEGA (Observatoire pour la Mineralogie, L’Eau, les Glaces et l’Activitié) instrument, preserve a record of the interaction of water with rocks on Mars. Global mapping showed that phyllosilicates are widespread but are apparently restricted to ancient terrains and a relatively narrow range of mineralogy (Fe/Mg and Al smectite clays). This was interpreted to indicate that phyllosilicate formation occurred during the Noachian (the earliest geological era of Mars), and that the conditions necessary for phyllosilicate formation (moderate to high pH and high water activity) were specific to surface environments during the earliest era of Mars’s history. Here we report results from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) of phyllosilicate-rich regions. We expand the diversity of phyllosilicate mineralogy with the identification of kaolinite, chlorite and illite or muscovite, and a new class of hydrated silicate (hydrated silica). We observe diverse Fe/Mg-OH phyllosilicates and find that smectites such as nontronite and saponite are the most common, but chlorites are also present in some locations. Stratigraphic relationships in the Nili Fossae region show olivine-rich materials overlying phyllosilicate-bearing units, indicating the cessation of aqueous alteration before emplacement of the olivine-bearing unit. Hundreds of detections of Fe/Mg phyllosilicate in rims, ejecta and central peaks of craters in the southern highland Noachian cratered terrain indicate excavation of altered crust from depth. We also find phyllosilicate in sedimentary deposits clearly laid by water. These results point to a rich diversity of Noachian environments conducive to habitability.


Journal of Geophysical Research | 2000

Detection of Crystalline Hematite Mineralization on Mars by the Thermal Emission Spectrometer: Evidence for Near-surface Water

Philip R. Christensen; Joshua L. Bandfield; Roger N. Clark; Kenneth S. Edgett; Victoria E. Hamilton; Todd M. Hoefen; Hugh H. Kieffer; Ruslan O. Kuzmin; Melissa D. Lane; M. C. Malin; Richard V. Morris; John C. Pearl; R. Pearson; Ted L. Roush; Steven W. Ruff; Michael D. Smith

The Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor (MGS) mission has discovered a remarkable accumulation of crystalline hematite (a-Fe2O3) that covers an area with very sharp boundaries approximately 350 by 350 -750 km in size centered near 28S latitude between 08 and 58W longitude (Sinus Meridiani). Crystalline hematite is uniquely identified by the presence of fundamental vibrational absorption features centered near 300, 450, and .525 cm21 and by the absence of silicate fundamentals in the 1000 cm 21 region. Spectral features resulting from atmospheric CO 2, dust, and water ice were removed using a radiative transfer model. The spectral properties unique to Sinus Meridiani were emphasized by removing the average spectrum of the surrounding region. The depth and shape of the hematite fundamental bands show that the hematite is crystalline and relatively coarse grained (.5-10 mm). Diameters up to and greater than hundreds of micrometers are permitted within the instrumental noise and natural variability of hematite spectra. Hematite particles ,5-10 mm in diameter (as either unpacked or hard-packed powders) fail to match the TES spectra. The spectrally derived areal abundance of hematite varies with particle size from ;10% (.30 mm diameter) to 40 - 60% (10 mm diameter). The hematite in Sinus Meridiani is thus distinct from the fine-grained (diameter ,5-10 mm), red, crystalline hematite considered, on the basis of visible, near-IR data, to be a minor spectral component in Martian bright regions like Olympus-Amazonis. Sinus Meridiani hematite is closely associated with a smooth, layered, friable surface that is interpreted to be sedimentary in origin. This material may be the uppermost surface in the region, indicating that it might be a late stage sedimentary unit or a layered portion of the heavily cratered plains units. We consider five possible mechanisms for the formation of coarse- grained, crystalline hematite. These processes fall into two classes depending on whether they require a significant amount of near-surface water: the first is chemical precipitation that includes origin by (1) precipitation from standing, oxygenated, Fe-rich water (oxide iron formations), (2) precipitation from Fe-rich hydrothermal fluids, (3) low-temperature dissolution and precipitation through mobile ground water leaching, and (4) formation of surface coatings, and the second is thermal oxidation of magnetite-rich lavas. Weathering and alteration processes, which produce nanophase and red hematite, are not consistent with the coarse, crystalline hematite observed in Sinus Meridiani. We prefer chemical precipitation models and favor precipitation from Fe-rich water on the basis of the probable association with sedimentary materials, large geographic size, distance from a regional heat source, and lack of evidence for extensive groundwater processes elsewhere on Mars. The TES results thus provide mineralogic evidence for probable large-scale water interactions. The Sinus Meridiani region may be an ideal candidate for future landed missions searching for biotic and prebiotic environments, and the physical characteristics of this site satisfy all of the engineering requirements for the missions currently planned.


Science | 1993

Surface ices and the atmospheric composition of Pluto

Tobias Owen; Ted L. Roush; Dale P. Cruikshank; James L. Elliot; Leslie A. Young; Catherine de Bergh; Bernard Schmitt; Thomas R. Geballe; Robert H. Brown; Mary Jane Bartholomew

Observations of the 1.4- to 2.4-micrometer spectrum of Pluto reveal absorptions of carbon monoxide and nitrogen ices and confirm the presence of solid methane. Frozen nitrogen is more abundant than the other two ices by a factor of about 50; gaseous nitrogen must therefore be the major atmospheric constituent. The absence of carbon dioxide absorptions is one of several differences between the spectra of Pluto and Triton in this region. Both worlds carry information about the composition of the solar nebula and the processes by which icy planetesimals formed.


Science | 1993

Ices on the Surface of Triton

Dale P. Cruikshank; Ted L. Roush; Tobias Owen; Thomas R. Geballe; Catherine de Bergh; Bernard Schmitt; Robert H. Brown; Mary Jane Bartholomew

The near-infrared spectrum of Triton reveals ices of nitrogen, methane, carbon monoxide, and carbon dioxide, of which nitrogen is the dominant component. Carbon dioxide ice may be spatially segregated from the other more volatile ices, covering about 10 percent of Tritons surface. The absence of ices of other hydrocarbons and nitriles challenges existing models of methane and nitrogen photochemistry on Triton.


Icarus | 1999

Evidence for Methane Segregation at the Surface of Pluto

Sylvain Douté; B. Schmitt; E. Quirico; Tobias C. Owen; Dale P. Cruikshank; C. de Bergh; Thomas R. Geballe; Ted L. Roush

Abstract In May 1995, a set of spectrophotometric curves of the system Pluto–Charon were recorded with the UKIRT telescope equipped with the spectrometer CGS4. The spectra cover the near-infrared range between 1.4 and 2.55 μm with a resolution of approximately 700. The existence of solid methane is confirmed by numerous absorption bands, and carbon monoxide and nitrogen ices are identified by their respective signatures at 2.35 and 2.15 μm. We have modeled the spectrum of May 15 that corresponds to the maximum of Plutos visible lightcurve using a radiative transfer algorithm dealing with compact and stratified media. A geographical mixture of three distinct units is required to explain all the significant structures of the analyzed spectrum. The first unit is a thin, fine-grained layer of pure CH4 covering a compact polycrystalline substratum of N2–CH4–CO, which are in a molecular mixture (concentrations of CH4 and CO of the order of 0.5 and 0.1–0.2% respectively). It covers about 70% of the observed area and corresponds to volatile deposits that are sublimating under solar illumination. The second unit is either (a) a single thick layer of pure large-grained methane or (b) a unit with large-grained CH4 forming a substratum and the N2–CH4–CO mixture a superficial layer of fine grains covering 20% of the surface. Finally, the third unit is bright and spectrally neutral and is first modeled as a layer of very fine grains of nearly pure N2. Tholin, suggested to explain the red slope in the visible, is also found to be spectrally compatible with this unit. It covers the remainder of the surface (about 10–15%). All these results allow a better understanding of the processes of deposition, metamorphism, sublimation, and transport affecting the different ices detected on Pluto during its climatic cycles.


Nature | 1997

Detection of ozone on Saturn's satellites Rhea and Dione

Keith S. Noll; Ted L. Roush; Dale P. Cruikshank; Robert E. Johnson; Yvonne J. Pendleton

The satellites Rhea and Dione orbit within the magnetosphere of Saturn, where they are exposed to particle irradiation from trapped ions. A similar situation applies to the galilean moons Europa, Ganymede and Callisto, which reside within Jupiters radiation belts. All of these satellites have surfaces rich in water ice. Laboratory studies of the interaction of charged-particle radiation with water ice predicted the tenuous oxygen atmospheres recently found on Europa and Ganymede. However, theoretical investigations did not anticipate the trapping of significantly larger quantities of O2 within the surface ice. The accumulation of detectable abundances of O3, produced by the action of ultraviolet or charged-particle radiation on O2, was also not predicted before being observed on Ganymede. Here we report the identification of O3 in spectra of the saturnian satellites Rhea and Dione. The presence of trapped O3 is thus no longer unique to Ganymede, suggesting that special circumstances may not be required for its production.


The Astrophysical Journal | 2007

NEAR-INFRARED SPECTROSCOPY OF CHARON: POSSIBLE EVIDENCE FOR CRYOVOLCANISM ON KUIPER BELT OBJECTS

Jason C. Cook; Steven Joseph Desch; Ted L. Roush; Chadwick Aaron Trujillo; Thomas R. Geballe

We present the first reported adaptive optics spectra of Charon in the H and K bands, which examine the anti-Pluto and sub-Pluto hemispheres. The ice temperature is estimated at 40-50 K, based on the 1.65 μm feature of crystalline water ice. We obtain the most accurate profiles of the 2.21 μm feature and confirm that the feature is due to hydrated ammonia. We attribute hemispheric differences in the features profile to different hydration states. We calculate the rate at which crystalline water ice is amorphized by solar UV/visible radiation, finding that at the depths probed by H and K observations (≈350 μm), the e-folding time to amorphize ice is (3-5) × 104 yr. This implies Charons ice crystallized from a melt, or has been heated to 90 K, during the last ~105 yr. The extent of the crystalline water ice and the short timescales involved argue that surface renewal is necessary, a conclusion reinforced by the presence of ammonia hydrates. We investigate possible mechanisms for surface renewal and conclude that cryovolcanism is the most likely.


Icarus | 1991

Derivation of midinfrared (5–25 μm) optical constants of some silicates and palagonite

Ted L. Roush; J.B. Pollack; James B. Orenberg

Abstract The midinfrared 2000−400 cm −1 (5–25 μm) optical constants (real ( n ) and imaginary ( k ) indices of refraction) are presented for: (1) pyrophyllite; (2) kaolinite; (3) serpentine; (4) montmorillonite; (5) saponite; (6) palagonite; and (7) orthopyroxene. Comparison of the values derived here with those previously presented for serpentine, montmorillonite, and palagonite is generally quite good and discrepancies between values are probably due to either chemical differences between the actual samples or different techniques used to derive the values. For montmorillonite, saponite, and palagonite we were able to derive optical constants in the region of the H 2 O-bending fundamental near 6 μm. We find that if a pellet of pure material can be produced with a mirror-like surface then the optical constants of clays and other noncohesive materials can be readily derived.

Collaboration


Dive into the Ted L. Roush's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas R. Geballe

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott L. Murchie

Johns Hopkins University Applied Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge