Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Teemu Kivioja is active.

Publication


Featured researches published by Teemu Kivioja.


Cell | 2013

DNA-binding specificities of human transcription factors.

Arttu Jolma; Jian Yan; Thomas Whitington; Jarkko Toivonen; Kazuhiro R. Nitta; Pasi Rastas; Ekaterina Morgunova; Martin Enge; Mikko Taipale; Gong-Hong Wei; Kimmo Palin; Juan M. Vaquerizas; Renaud Vincentelli; Nicholas M. Luscombe; Timothy R. Hughes; Patrick Lemaire; Esko Ukkonen; Teemu Kivioja; Jussi Taipale

Although the proteins that read the gene regulatory code, transcription factors (TFs), have been largely identified, it is not well known which sequences TFs can recognize. We have analyzed the sequence-specific binding of human TFs using high-throughput SELEX and ChIP sequencing. A total of 830 binding profiles were obtained, describing 239 distinctly different binding specificities. The models represent the majority of human TFs, approximately doubling the coverage compared to existing systematic studies. Our results reveal additional specificity determinants for a large number of factors for which a partial specificity was known, including a commonly observed A- or T-rich stretch that flanks the core motifs. Global analysis of the data revealed that homodimer orientation and spacing preferences, and base-stacking interactions, have a larger role in TF-DNA binding than previously appreciated. We further describe a binding model incorporating these features that is required to understand binding of TFs to DNA.


Nature Genetics | 2009

The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling

Sari Tuupanen; Mikko P. Turunen; Rainer Lehtonen; Outi Hallikas; Sakari Vanharanta; Teemu Kivioja; Mikael Björklund; Gong-Hong Wei; Jian Yan; Iina Niittymäki; Jukka Pekka Mecklin; Heikki Järvinen; Ari Ristimäki; Mariachiara Di-Bernardo; Phil East; Luis Carvajal-Carmona; Richard S. Houlston; Ian Tomlinson; Kimmo Palin; Esko Ukkonen; Auli Karhu; Jussi Taipale; Lauri A. Aaltonen

Homozygosity for the G allele of rs6983267 at 8q24 increases colorectal cancer (CRC) risk ∼1.5 fold. We report here that the risk allele G shows copy number increase during CRC development. Our computer algorithm, Enhancer Element Locator (EEL), identified an enhancer element that contains rs6983267. The element drove expression of a reporter gene in a pattern that is consistent with regulation by the key CRC pathway Wnt. rs6983267 affects a binding site for the Wnt-regulated transcription factor TCF4, with the risk allele G showing stronger binding in vitro and in vivo. Genome-wide ChIP assay revealed the element as the strongest TCF4 binding site within 1 Mb of MYC. An unambiguous correlation between rs6983267 genotype and MYC expression was not detected, and additional work is required to scrutinize all possible targets of the enhancer. Our work provides evidence that the common CRC predisposition associated with 8q24 arises from enhanced responsiveness to Wnt signaling.


Nature Methods | 2012

Counting absolute numbers of molecules using unique molecular identifiers

Teemu Kivioja; Anna Vähärautio; Kasper Karlsson; Martin Bonke; Martin Enge; Sten Linnarsson; Jussi Taipale

Counting individual RNA or DNA molecules is difficult because they are hard to copy quantitatively for detection. To overcome this limitation, we applied unique molecular identifiers (UMIs), which make each molecule in a population distinct, to genome-scale human karyotyping and mRNA sequencing in Drosophila melanogaster. Use of this method can improve accuracy of almost any next-generation sequencing method, including chromatin immunoprecipitation–sequencing, genome assembly, diagnostics and manufacturing-process control and monitoring.


The EMBO Journal | 2010

Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo

Gong-Hong Wei; Gwenael Badis; Michael F. Berger; Teemu Kivioja; Kimmo Palin; Martin Enge; Martin Bonke; Arttu Jolma; Markku Varjosalo; Andrew R. Gehrke; Jian Yan; Shaheynoor Talukder; Mikko Turunen; Mikko Taipale; Hendrik G. Stunnenberg; Esko Ukkonen; Timothy R. Hughes; Martha L. Bulyk; Jussi Taipale

Members of the large ETS family of transcription factors (TFs) have highly similar DNA‐binding domains (DBDs)—yet they have diverse functions and activities in physiology and oncogenesis. Some differences in DNA‐binding preferences within this family have been described, but they have not been analysed systematically, and their contributions to targeting remain largely uncharacterized. We report here the DNA‐binding profiles for all human and mouse ETS factors, which we generated using two different methods: a high‐throughput microwell‐based TF DNA‐binding specificity assay, and protein‐binding microarrays (PBMs). Both approaches reveal that the ETS‐binding profiles cluster into four distinct classes, and that all ETS factors linked to cancer, ERG, ETV1, ETV4 and FLI1, fall into just one of these classes. We identify amino‐acid residues that are critical for the differences in specificity between all the classes, and confirm the specificities in vivo using chromatin immunoprecipitation followed by sequencing (ChIP‐seq) for a member of each class. The results indicate that even relatively small differences in in vitro binding specificity of a TF contribute to site selectivity in vivo.


Genome Research | 2010

Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities

Arttu Jolma; Teemu Kivioja; Jarkko Toivonen; Lu Cheng; Gong-Hong Wei; Martin Enge; Mikko Taipale; Juan M. Vaquerizas; Jian Yan; Mikko J. Sillanpää; Martin Bonke; Kimmo Palin; Shaheynoor Talukder; Timothy Hughes; Nicholas M. Luscombe; Esko Ukkonen; Jussi Taipale

The genetic code-the binding specificity of all transfer-RNAs--defines how protein primary structure is determined by DNA sequence. DNA also dictates when and where proteins are expressed, and this information is encoded in a pattern of specific sequence motifs that are recognized by transcription factors. However, the DNA-binding specificity is only known for a small fraction of the approximately 1400 human transcription factors (TFs). We describe here a high-throughput method for analyzing transcription factor binding specificity that is based on systematic evolution of ligands by exponential enrichment (SELEX) and massively parallel sequencing. The method is optimized for analysis of large numbers of TFs in parallel through the use of affinity-tagged proteins, barcoded selection oligonucleotides, and multiplexed sequencing. Data are analyzed by a new bioinformatic platform that uses the hundreds of thousands of sequencing reads obtained to control the quality of the experiments and to generate binding motifs for the TFs. The described technology allows higher throughput and identification of much longer binding profiles than current microarray-based methods. In addition, as our method is based on proteins expressed in mammalian cells, it can also be used to characterize DNA-binding preferences of full-length proteins or proteins requiring post-translational modifications. We validate the method by determining binding specificities of 14 different classes of TFs and by confirming the specificities for NFATC1 and RFX3 using ChIP-seq. Our results reveal unexpected dimeric modes of binding for several factors that were thought to preferentially bind DNA as monomers.


Cell | 2013

Transcription Factor Binding in Human Cells Occurs in Dense Clusters Formed around Cohesin Anchor Sites

Jian Yan; Martin Enge; Thomas Whitington; Kashyap Dave; Jianping Liu; Inderpreet Sur; Bernhard Schmierer; Arttu Jolma; Teemu Kivioja; Minna Taipale; Jussi Taipale

During cell division, transcription factors (TFs) are removed from chromatin twice, during DNA synthesis and during condensation of chromosomes. How TFs can efficiently find their sites following these stages has been unclear. Here, we have analyzed the binding pattern of expressed TFs in human colorectal cancer cells. We find that binding of TFs is highly clustered and that the clusters are enriched in binding motifs for several major TF classes. Strikingly, almost all clusters are formed around cohesin, and loss of cohesin decreases both DNA accessibility and binding of TFs to clusters. We show that cohesin remains bound in S phase, holding the nascent sister chromatids together at the TF cluster sites. Furthermore, cohesin remains bound to the cluster sites when TFs are evicted in early M phase. These results suggest that cohesin-binding functions as a cellular memory that promotes re-establishment of TF clusters after DNA replication and chromatin condensation.


Nature | 2015

DNA-dependent formation of transcription factor pairs alters their binding specificity.

Arttu Jolma; Yimeng Yin; Kazuhiro R. Nitta; Kashyap Dave; Alexander N. Popov; Minna Taipale; Martin Enge; Teemu Kivioja; Ekaterina Morgunova; Jussi Taipale

Gene expression is regulated by transcription factors (TFs), proteins that recognize short DNA sequence motifs. Such sequences are very common in the human genome, and an important determinant of the specificity of gene expression is the cooperative binding of multiple TFs to closely located motifs. However, interactions between DNA-bound TFs have not been systematically characterized. To identify TF pairs that bind cooperatively to DNA, and to characterize their spacing and orientation preferences, we have performed consecutive affinity-purification systematic evolution of ligands by exponential enrichment (CAP-SELEX) analysis of 9,400 TF–TF–DNA interactions. This analysis revealed 315 TF–TF interactions recognizing 618 heterodimeric motifs, most of which have not been previously described. The observed cooperativity occurred promiscuously between TFs from diverse structural families. Structural analysis of the TF pairs, including a novel crystal structure of MEIS1 and DLX3 bound to their identified recognition site, revealed that the interactions between the TFs were predominantly mediated by DNA. Most TF pair sites identified involved a large overlap between individual TF recognition motifs, and resulted in recognition of composite sites that were markedly different from the individual TF’s motifs. Together, our results indicate that the DNA molecule commonly plays an active role in cooperative interactions that define the gene regulatory lexicon.


Nature Genetics | 2015

CTCF/cohesin-binding sites are frequently mutated in cancer

Riku Katainen; Kashyap Dave; Esa Pitkänen; Kimmo Palin; Teemu Kivioja; Niko Välimäki; Alexandra E. Gylfe; Heikki Ristolainen; Ulrika A. Hänninen; Tatiana Cajuso; Johanna Kondelin; Tomas Tanskanen; Jukka-Pekka Mecklin; Heikki Järvinen; Laura Renkonen-Sinisalo; Anna Lepistö; Eevi Kaasinen; Outi Kilpivaara; Sari Tuupanen; Martin Enge; Jussi Taipale; Lauri A. Aaltonen

Cohesin is present in almost all active enhancer regions, where it is associated with transcription factors. Cohesin frequently colocalizes with CTCF (CCCTC-binding factor), affecting genomic stability, expression and epigenetic homeostasis. Cohesin subunits are mutated in cancer, but CTCF/cohesin-binding sites (CBSs) in DNA have not been examined for mutations. Here we report frequent mutations at CBSs in cancers displaying a mutational signature where mutations in A•T base pairs predominate. Integration of whole-genome sequencing data from 213 colorectal cancer (CRC) samples and chromatin immunoprecipitation sequencing (ChIP-exo) data identified frequent point mutations at CBSs. In contrast, CRCs showing an ultramutator phenotype caused by defects in the exonuclease domain of DNA polymerase ɛ (POLE) displayed significantly fewer mutations at and adjacent to CBSs. Analysis of public data showed that multiple cancer types accumulate CBS mutations. CBSs are a major mutational hotspot in the noncoding cancer genome.


Cell | 2008

Application of active and kinase-deficient kinome collection for identification of kinases regulating hedgehog signaling

Markku Varjosalo; Mikael Björklund; Fang Cheng; Heidi Syvänen; Teemu Kivioja; Sami Kilpinen; Zairen Sun; Olli Kallioniemi; Hendrik G. Stunnenberg; Wei-Wu He; Päivi M. Ojala; Jussi Taipale

To allow genome-scale identification of genes that regulate cellular signaling, we cloned >90% of all human full-length protein kinase cDNAs and constructed the corresponding kinase activity-deficient mutants. To establish the utility of this resource, we tested the effect of expression of the kinases on three different cellular signaling models. In all screens, many kinases had a modest but significant effect, apparently due to crosstalk between signaling pathways. However, the strongest effects were found with known regulators and novel components, such as MAP3K10 and DYRK2, which we identified in a mammalian Hedgehog (Hh) signaling screen. DYRK2 directly phosphorylated and induced the proteasome-dependent degradation of the key Hh pathway-regulated transcription factor, GLI2. MAP3K10, in turn, affected GLI2 indirectly by modulating the activity of DYRK2 and the known Hh pathway component, GSK3beta. Our results establish kinome expression screening as a highly effective way to identify physiological signaling pathway components and genes involved in pathological signaling crosstalk.


Science | 2017

Impact of cytosine methylation on DNA binding specificities of human transcription factors.

Yimeng Yin; Ekaterina Morgunova; Arttu Jolma; Eevi Kaasinen; Biswajyoti Sahu; Syed Khund-Sayeed; Pratyush K. Das; Teemu Kivioja; Kashyap Dave; Fan Zhong; Kazuhiro R. Nitta; Minna Taipale; Alexander Popov; Paul Adrian Ginno; Silvia Domcke; Jian Yan; Dirk Schübeler; Charles Vinson; Jussi Taipale

Positives and negatives of methylated CpG When the DNA bases cytosine and guanine are next to each other, a methyl group is generally added to the pyrimidine, generating a mCpG dinucleotide. This modification alters DNA structure but can also affect function by inhibiting transcription factor (TF) binding. Yin et al. systematically analyzed the effect of CpG methylation on the binding of 542 human TFs (see the Perspective by Hughes and Lambert). In addition to inhibiting binding of some TFs, they found that mCpGs can promote binding of others, particularly TFs involved in development, such as homeodomain proteins. Science, this issue p. eaaj2239; see also p. 489 Genome-scale analysis reveals positive and negative binding of transcription factors to methylated CpG dinucleotides. INTRODUCTION Nearly all cells in the human body share the same primary genome sequence consisting of four nucleotide bases. One of the bases, cytosine, is commonly modified by methylation of its 5 position in CpG dinucleotides (mCpG). Most CpG dinucleotides in the human genome are methylated, but the level of CpG methylation varies with genetic location (promoter versus gene body), whether genes are active versus silenced, and cell type. Research has shown that the maintenance of a particular cellular state after cell division is dependent on faithful transmission of methylated CpGs, as well as inheritance of the mother cells’ repertoire of transcription factors by the daughter cells. These two mechanisms of epigenetic inheritance are linked to each other; the binding of transcription factors can be affected by cytosine methylation, and cytosine methylation can, in turn, be added or removed by proteins that associate with transcription factors. RATIONALE The genetic and epigenetic language, which imparts when and where genes are expressed, is understood at a conceptual level. However, a more detailed understanding is needed of the genomic regulatory mechanism by which methylated cytosines affect transcription factor binding. Because cytosine methylation changes DNA structure, it has the potential to affect binding of all transcription factors. However, a systematic analysis of binding of a large collection of transcription factors to all possible DNA sequences has not previously been conducted. RESULTS To globally characterize the effect of cytosine methylation on transcription factor binding, we systematically analyzed binding specificities of full-length transcription factors and extended DNA binding domains to unmethylated and CpG-methylated DNA by using methylation-sensitive SELEX (systematic evolution of ligands by exponential enrichment). We evaluated binding of 542 transcription factors and identified a large number of previously uncharacterized transcription factor recognition motifs. Binding of most major classes of transcription factors, including bHLH, bZIP, and ETS, was inhibited by mCpG. In contrast, transcription factors such as homeodomain, POU, and NFAT proteins preferred to bind methylated DNA. This class of binding was enriched in factors with central roles in embryonic and organismal development. The observed binding preferences were validated using several orthogonal methods, including bisulfite-SELEX and protein-binding microarrays. In addition, the preference of the pluripotency factor OCT4 to bind to a mCpG-containing motif was confirmed by chromatin immunoprecipitation analysis in mouse embryonic stem cells with low or high levels of CpG methylation (due to deficiency in all enzymes that methylate cytosines or contribute to their removal, respectively). Crystal structure analysis of the homeodomain proteins HOXB13, CDX1, CDX2, and LHX4 revealed three key residues that contribute to the preference of this developmentally important family of transcription factors for mCpG. The preference for binding to mCpG was due to direct hydrophobic interactions with the 5-methyl group of methylcytosine. In contrast, inhibition of binding of other transcription factors to methylated sequences was found to be caused by steric hindrance. CONCLUSION Our work constitutes a global analysis of the effect of cytosine methylation on DNA binding specificities of human transcription factors. CpG methylation can influence binding of most transcription factors to DNA—in some cases negatively and in others positively. Our finding that many developmentally important transcription factors prefer to bind to mCpG sites can inform future analyses of the role of DNA methylation on cell differentiation, chromatin reprogramming, and transcriptional regulation. Systematic analysis of the impact of CpG methylation on transcription factor binding. The bottom left panel shows the fraction of transcription factors that prefer methylated (orange) or unmethylated (teal) CpG sites, are affected in multiple ways (yellow), are not affected (green), or do not have a CpG in their motifs (gray), as determined by methylation-sensitive SELEX (top left). The structure and logos on the right highlight how HOXB13 recognizes mCpG (blue shading indicates a CpG affected by methylation). The majority of CpG dinucleotides in the human genome are methylated at cytosine bases. However, active gene regulatory elements are generally hypomethylated relative to their flanking regions, and the binding of some transcription factors (TFs) is diminished by methylation of their target sequences. By analysis of 542 human TFs with methylation-sensitive SELEX (systematic evolution of ligands by exponential enrichment), we found that there are also many TFs that prefer CpG-methylated sequences. Most of these are in the extended homeodomain family. Structural analysis showed that homeodomain specificity for methylcytosine depends on direct hydrophobic interactions with the methylcytosine 5-methyl group. This study provides a systematic examination of the effect of an epigenetic DNA modification on human TF binding specificity and reveals that many developmentally important proteins display preference for mCpG-containing sequences.

Collaboration


Dive into the Teemu Kivioja's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kimmo Palin

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Yan

Karolinska Institutet

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge