Teiyuu Kimura
Denso
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Teiyuu Kimura.
SAE 2010 World Congress & Exhibition | 2010
Satori Hachisuka; Teiyuu Kimura; Kenji Ishida; Hiroto Nakatani; Noriyuki Ozaki
This paper presents the method of detecting driver’s drowsiness level from the facial expression. The motivation for this research is to realize the novel safety system which can detect the driver’s slight drowsiness and keep the driver awake while driving. The brain wave is commonly used as the drowsiness index. However, it is not suitable for the in-vehicle system since it is measured with sensors worn over the head. We precisely investigated the relationship between the change of brain wave and other drowsiness indices that can be measured without any contact; PERCLOS, heart rate, lane deviation, and facial expression. We found that the facial expression index had the highest linear correlation with the brain wave. Therefore, we selected the facial expression as the drowsiness-detection index and automated the drowsiness detection from the facial expression. Three problems need to be solved for automation; (1) how to de ne the features of drowsy expression, (2) how to capture the features from the driver’s video-recorded facial image, and (3) how to estimate the driver’s drowsiness index from the features. First, we found that frontalis muscle, zygomaticus major muscle, and masseter muscle activated with increase of drowsiness in more than 75 percents of participants. According to the result, we determined the coordinates data of points on eyebrows, eyelids, and mouth as the features of drowsiness expression. Second, we calculated the 3D coordinates data of the features by image processing with Active Appearance Model (AAM). Third, we applied k-Nearest-Neighbor method to classify the driver’s drowsiness level. Eleven participants’ data of the features and the drowsiness level estimated by trained observers were used as the training data. We achieved the classi cation of the drivers’ drowsiness in a driving simulator into 6 levels. The average Root Mean Square Errors (RMSE) among 12 participants was less than 1.0 level.
Archive | 2000
Teiyuu Kimura; Rie Ohsaki; Shinji Nanba; Satoshi Takeuchi; Seiichi Yamada; Satoru Kodama; Masao Hasegawa; Masahiko Ito; Tsukasa Koumura
Archive | 2002
Katsuyoshi Nishii; Teiyuu Kimura; Satoshi Takeuchi; Shinji Nanba; Junichiro Hayano
Archive | 2001
Rie Ohsaki; Teiyuu Kimura; Shinji Nanba; Junichiro Hayano; Toshiaki Shiomi
Archive | 2004
Kazuhiro Sakai; Teiyuu Kimura; Katsuyoshi Nishii; Kazuya Inokawa; Tetsuya Nakashima
Archive | 2004
Teiyuu Kimura; Taiji Kawachi; Kazuhiro Sakai
Archive | 2008
Kenji Ishida; Kahori Uchiyama; Teiyuu Kimura; Noriyuki Ozaki
Archive | 2005
Fumiya Nagai; Teiyuu Kimura; Katsuyoshi Nishii; Kazuhiro Sakai
Archive | 2001
Rie Ohsaki; Teiyuu Kimura; Naoki Fukaya
Archive | 2005
Katsuyoshi Nishii; Teiyuu Kimura; Kazuhiro Sakai; Fumiya Nagai; Kazuya Inokawa