Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Teresa A. Davis is active.

Publication


Featured researches published by Teresa A. Davis.


Amino Acids | 2009

Arginine metabolism and nutrition in growth, health and disease

Guoyao Wu; Fuller W. Bazer; Teresa A. Davis; Sung Woo Kim; Peng Li; J. Marc Rhoads; M. Carey Satterfield; Stephen B. Smith; Thomas E. Spencer; Yulong Yin

Abstractl-Arginine (Arg) is synthesised from glutamine, glutamate, and proline via the intestinal-renal axis in humans and most other mammals (including pigs, sheep and rats). Arg degradation occurs via multiple pathways that are initiated by arginase, nitric-oxide synthase, Arg:glycine amidinotransferase, and Arg decarboxylase. These pathways produce nitric oxide, polyamines, proline, glutamate, creatine, and agmatine with each having enormous biological importance. Arg is also required for the detoxification of ammonia, which is an extremely toxic substance for the central nervous system. There is compelling evidence that Arg regulates interorgan metabolism of energy substrates and the function of multiple organs. The results of both experimental and clinical studies indicate that Arg is a nutritionally essential amino acid (AA) for spermatogenesis, embryonic survival, fetal and neonatal growth, as well as maintenance of vascular tone and hemodynamics. Moreover, a growing body of evidence clearly indicates that dietary supplementation or intravenous administration of Arg is beneficial in improving reproductive, cardiovascular, pulmonary, renal, gastrointestinal, liver and immune functions, as well as facilitating wound healing, enhancing insulin sensitivity, and maintaining tissue integrity. Additionally, Arg or l-citrulline may provide novel and effective therapies for obesity, diabetes, and the metabolic syndrome. The effect of Arg in treating many developmental and health problems is unique among AAs, and offers great promise for improved health and wellbeing of humans and animals.


Pediatric Research | 1995

Nutrient-independent and nutrient-dependent factors stimulate protein synthesis in colostrum-fed newborn pigs.

Douglas G. Burrin; Teresa A. Davis; Sylvie Ebner; Patricia A. Schoknecht; Marta L. Fiorotto; Peter J. Reeds; Susan Mcavoy

ABSTRACT: We hypothesized that nonnutrient components, including growth factors, present in colostrum contribute to the stimulation of protein synthesis in colostrum-fed neonatal pigs. We studied neonatal pigs fed mature milk, colostrum, or a formula containing a macronutrient composition comparable to that of colostrum for 24 h. We measured the circulating concentrations of insulin, insulin-like growth factor I, glucose, and amino acids at intervals throughout the 24-h period, after which we measured in vivo protein synthesis using a flooding dose of [3H]phenylalanine. The rates of protein synthesis in several tissues measured after 24 h of feeding were greater than those we reported previously after 6 h of feeding. The acute (within 6 h) stimulation of protein synthesis in visceral and skeletal muscle tissues of neonatal pigs fed milk, colostrum, or formula was primarily influenced by nutrient intake and associated with rapid secretion of insulin. Indirect evidence suggests that intestinal absorption of ingested colostral insulin was minimal. However, the sustained increase in tissue protein synthesis between 6 and 24 h coincided with an increase in circulating insulin-like growth factor I. We found a novel, specific stimulation of skeletal muscle and jejunal protein synthesis in colostrum-fed pigs that can be attributed to some nonnutrient component of colostrum.


Current Opinion in Clinical Nutrition and Metabolic Care | 2009

Regulation of muscle growth in neonates

Teresa A. Davis; Marta L. Fiorotto

Purpose of reviewThis review reports recent findings on the multiple factors that regulate skeletal muscle growth in neonates. Recent findingsSkeletal muscle is the fastest growing protein mass in neonates. The high rate of neonatal muscle growth is due to accelerated rates of protein synthesis accompanied by the rapid accumulation of muscle nuclei. Feeding profoundly stimulates muscle protein synthesis in neonates and the response decreases with age. The feeding-induced stimulation of muscle protein synthesis is modulated by enhanced sensitivity to the postprandial rise in insulin and amino acids. Insulin and amino acid signaling components have been identified that are involved in the feeding-induced stimulation of protein synthesis in neonatal muscle. The enhanced activation of these signaling components in skeletal muscle of the neonate contributes to the high rate of muscle protein synthesis and rapid gain in muscle protein mass in neonates. SummaryRecent findings suggest that the immature muscle has a heightened capacity to activate signaling cascades that promote translation initiation in response to the postprandial rise in insulin and amino acids thereby enabling their efficient utilization for muscle growth. This capacity is further supported by enhanced satellite cell proliferation, but how these two processes are linked remains to be established.


American Journal of Physiology-endocrinology and Metabolism | 2008

Leucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing mTORC1 activation

Agus Suryawan; Asumthia S. Jeyapalan; Renan A. Orellana; Fiona A. Wilson; Hanh V. Nguyen; Teresa A. Davis

Skeletal muscle in the neonate grows at a rapid rate due in part to an enhanced sensitivity to the postprandial rise in amino acids, particularly leucine. To elucidate the molecular mechanism by which leucine stimulates protein synthesis in neonatal muscle, overnight-fasted 7-day-old piglets were treated with rapamycin [an inhibitor of mammalian target of rapamycin (mTOR) complex (mTORC)1] for 1 h and then infused with leucine for 1 h. Fractional rates of protein synthesis and activation of signaling components that lead to mRNA translation were determined in skeletal muscle. Rapamycin completely blocked leucine-induced muscle protein synthesis. Rapamycin markedly reduced raptor-mTOR association, an indicator of mTORC1 activation. Rapamycin blocked the leucine-induced phosphorylation of mTOR, S6 kinase 1 (S6K1), and eukaryotic initiation factor (eIF)4E-binding protein-1 (4E-BP1) and formation of the eIF4E.eIF4G complex and increased eIF4E.4E-BP1 complex abundance. Rapamycin had no effect on the association of mTOR with rictor, a crucial component for mTORC2 activation, or G protein beta-subunit-like protein (GbetaL), a component of mTORC1 and mTORC2. Neither leucine nor rapamycin affected the phosphorylation of AMP-activated protein kinase (AMPK), PKB, or tuberous sclerosis complex (TSC)2, signaling components that reside upstream of mTOR. Eukaryotic elongation factor (eEF)2 phosphorylation was not affected by leucine or rapamycin, although current dogma indicates that eEF2 phosphorylation is mTOR dependent. Together, these in vivo data suggest that leucine stimulates muscle protein synthesis in neonates by enhancing mTORC1 activation and its downstream effectors.


The Journal of Physiology | 2007

Long-chain omega-3 fatty acids regulate bovine whole-body protein metabolism by promoting muscle insulin signalling to the Akt–mTOR–S6K1 pathway and insulin sensitivity

Andrée-Anne Gingras; Phillip J. White; P. Yvan Chouinard; Pierre Julien; Teresa A. Davis; Luce Dombrowski; Y. Couture; Pascal Dubreuil; Alexandre Myre; Karen Bergeron; André Marette; M. Carole Thivierge

The ability of the skeletal musculature to use amino acids to build or renew constitutive proteins is gradually lost with age and this is partly due to a decline in skeletal muscle insulin sensitivity. Since long‐chain omega‐3 polyunsaturated fatty acids (LCn–3PUFA) from fish oil are known to improve insulin‐mediated glucose metabolism in insulin‐resistant states, their potential role in regulating insulin‐mediated protein metabolism was investigated in this study. Experimental data are based on a switchback design composed of three 5 week experimental periods using six growing steers to compare the effect of a continuous abomasal infusion of LCn–3PUFA‐rich menhaden oil with an iso‐energetic control oil mixture. Clamp and insulin signalling observations were combined with additional data from a second cohort of six steers. We found that enteral LCn–3PUFA potentiate insulin action by increasing the insulin‐stimulated whole‐body disposal of amino acids from 152 to 308 μmol kg−1 h−1 (P= 0.006). The study further showed that in the fed steady‐state, chronic adaptation to LCn–3PUFA induces greater activation (P < 0.05) of the Akt–mTOR–S6K1 signalling pathway. Simultaneously, whole‐body total flux of phenylalanine was reduced from 87 to 67 μmol kg−1 h−1 (P= 0.04) and oxidative metabolism was decreased (P= 0.05). We conclude that chronic feeding of menhaden oil provides a novel nutritional mean to enhance insulin‐sensitive aspects of protein metabolism.


American Journal of Physiology-endocrinology and Metabolism | 1999

Aminoacyl-tRNA and tissue free amino acid pools are equilibrated after a flooding dose of phenylalanine

Teresa A. Davis; Marta L. Fiorotto; Hanh V. Nguyen; Douglas G. Burrin

The flooding dose method, which is used to measure tissue protein synthesis, assumes equilibration of the isotopic labeling between the aminoacyl-tRNA pool and the tissue and blood free amino acid pools. However, this has not been verified for a phenylalanine tracer in an in vivo study. We determined the specific radioactivity of [(3)H]phenylalanine in the aminoacyl-tRNA and the tissue and blood free amino acid pools of skeletal muscle and liver 30 min after administration of a flooding dose of phenylalanine along with [(3)H]phenylalanine. Studies were performed in neonatal pigs in the fasted and refed states and during hyperinsulinemic-euglycemic-amino acid clamps. The results showed that, 30 min after the administration of a flooding dose of phenylalanine, there was equilibration of the specific radioactivity of phenylalanine among the blood, tissue, and tRNA precursor pools. Equilibration of the specific radioactivity of the three precursor pools for protein synthesis occurred in both skeletal muscle and liver. Neither feeding nor insulin status affected the aminoacyl-tRNA specific radioactivity relative to the tissue free amino acid specific radioactivity. The results support the assumption that the tissue free amino acid pool specific radioactivity is a valid measure of the precursor pool specific radioactivity and thus can be used to calculate protein synthesis rates in skeletal muscle and liver when a flooding dose of phenylalanine is administered.


American Journal of Physiology-endocrinology and Metabolism | 1998

Response of skeletal muscle protein synthesis to insulin in suckling pigs decreases with development

Diane Wray-Cahen; Hanh V. Nguyen; Douglas G. Burrin; Philip R. Beckett; Marta L. Fiorotto; Peter J. Reeds; T.J. Wester; Teresa A. Davis

The elevated rate of muscle protein deposition in the neonate is largely due to an enhanced stimulation of skeletal muscle protein synthesis by feeding. To examine the role of insulin in this response, hyperinsulinemic-euglycemic-amino acid clamps were performed in 7- and 26-day-old pigs. Pigs were infused with 0, 30, 100, or 1,000 ng ⋅ kg-0.66 ⋅ min-1of insulin to mimic the plasma insulin levels observed under fasted, fed, refed, and supraphysiological conditions, respectively. Whole body amino acid disposal was determined from the rate of infusion of an amino acid mixture necessary to maintain plasma essential amino acid concentrations near their basal fasting levels. A flooding dose ofl-[4-3H]phenylalanine was used to measure skeletal muscle protein synthesis. Whole body amino acid disposal increased progressively as the insulin infusion rate increased, and this response was greater in 7- than in 26-day-old pigs. Skeletal muscle protein synthesis was stimulated by insulin, and this response was maximal at a low insulin infusion rate (30 ng ⋅ kg-0.66 ⋅ min-1). The stimulation of muscle protein synthesis by insulin was also greater in 7- than in 26- day-old pigs. These data suggest that muscle protein synthesis is more sensitive to insulin than whole body amino acid disposal. The results further suggest that insulin is a central regulatory factor in the elevated rate of muscle protein deposition and the increased response of skeletal muscle protein synthesis to feeding in the neonate.The elevated rate of muscle protein deposition in the neonate is largely due to an enhanced stimulation of skeletal muscle protein synthesis by feeding. To examine the role of insulin in this response, hyperinsulinemic-euglycemic-amino acid clamps were performed in 7- and 26-day-old pigs. Pigs were infused with 0, 30, 100, or 1,000 ng . kg-0.66 . min-1 of insulin to mimic the plasma insulin levels observed under fasted, fed, refed, and supraphysiological conditions, respectively. Whole body amino acid disposal was determined from the rate of infusion of an amino acid mixture necessary to maintain plasma essential amino acid concentrations near their basal fasting levels. A flooding dose of L-[4-3H]phenylalanine was used to measure skeletal muscle protein synthesis. Whole body amino acid disposal increased progressively as the insulin infusion rate increased, and this response was greater in 7- than in 26-day-old pigs. Skeletal muscle protein synthesis was stimulated by insulin, and this response was maximal at a low insulin infusion rate (30 ng . kg-0.66 . min-1). The stimulation of muscle protein synthesis by insulin was also greater in 7- than in 26- day-old pigs. These data suggest that muscle protein synthesis is more sensitive to insulin than whole body amino acid disposal. The results further suggest that insulin is a central regulatory factor in the elevated rate of muscle protein deposition and the increased response of skeletal muscle protein synthesis to feeding in the neonate.


Journal of Nutrition | 2010

Leucine Supplementation of a Low-Protein Meal Increases Skeletal Muscle and Visceral Tissue Protein Synthesis in Neonatal Pigs by Stimulating mTOR-Dependent Translation Initiation

Roberto Murgas Torrazza; Agus Suryawan; Maria C. Gazzaneo; Renan A. Orellana; Jason W. Frank; Hanh V. Nguyen; Marta L. Fiorotto; Samer W. El-Kadi; Teresa A. Davis

Protein synthesis and eukaryotic initiation factor (eIF) activation are increased in skeletal muscle of neonatal pigs parenterally infused with amino acids. Leucine appears to be the most effective single amino acid to trigger these effects. To examine the response to enteral leucine supplementation, overnight food-deprived 5-d-old pigs were gavage fed at 0 and 60 min a: 1) low-protein diet (LP); 2) LP supplemented with leucine (LP+L) to equal leucine in the high-protein diet (HP); or 3) HP diet. Diets were isocaloric and equal in lactose. Fractional protein synthesis rates and translation initiation control mechanisms were examined in skeletal muscles and visceral tissues 90 min after feeding. Protein synthesis rates in longissimus dorsi, gastrocnemius, and masseter muscles, heart, jejunum, kidney, and pancreas, but not liver, were greater in the LP+L group compared with the LP group and did not differ from the HP group. Feeding LP+L and HP diets compared with the LP diet increased phosphorylation of mammalian target of rapamycin (mTOR), 4E-binding protein 1, ribosomal protein S6 kinase-1, and eIF4G and formation of the active eIF4E·eIF4G complex in longissimus dorsi muscle. In all tissues except liver, activation of mTOR effectors increased in pigs fed LP+L and HP vs. LP diets. Our results suggest that leucine supplementation of a low-protein meal stimulates protein synthesis in muscle and most visceral tissues to a rate similar to that achieved by feeding a high-protein meal and this stimulation involves activation of mTOR downstream effectors.


British Journal of Nutrition | 1994

Amino acid composition of the milk of some mammalian species changes with stage of lactation

Teresa A. Davis; Hanh V. Nguyen; Roselina Garcia-Bravo; Marta L. Fiorotto; Evelyn M. Jackson; Peter J. Reeds

To determine whether the amino acid composition of milk changes during lactation, we compared the amino acid pattern (concentration of each individual amino acid relative to the total amino acid concentration) of colostrum with that of mature milk in six mammalian species. In the human, horse, pig and cow, the pattern of amino acids changed between colostrum and mature milk: glutamate, proline, methionine, isoleucine and lysine increased; cystine, glycine, serine, threonine and alanine decreased. In these four species, the total amino acid concentration also decreased 75% between colostrum and mature milk. In the baboon (Papio cynocephalus anubis and Papio cynocephalus anubis/Papio cynocephalus cynocephalus) and rhesus monkey (Macaca mulatta), however, there was little change in the pattern of amino acids between colostrum and mature milk, and total amino acid concentration decreased only about 25% between colostrum and mature milk. Mature milk rather than colostrum was the most similar among the three primates in both amino acid pattern and total amino acid concentration. We conclude, in those species in which total amino acid concentrations decline substantially between colostrum and mature milk, amino acid patterns also change. The presence of a change in amino acid pattern and total amino acid concentration during lactation appears to be unrelated to phylogenetic order.


Frontiers in Bioscience | 2011

Regulation of protein synthesis by amino acids in muscle of neonates.

Agus Suryawan; Teresa A. Davis

The marked increase in skeletal muscle mass during the neonatal period is largely due to a high rate of postprandial protein synthesis that is modulated by an enhanced sensitivity to insulin and amino acids. The amino acid signaling pathway leading to the stimulation of protein synthesis has not been fully elucidated. Among the amino acids, leucine is considered to be a principal anabolic agent that regulates protein synthesis. mTORC1, which controls protein synthesis, has been implicated as a target for leucine. Until recently, there have been few studies exploring the role of amino acids in enhancing muscle protein synthesis in vivo. In this review, we discuss amino acid-induced protein synthesis in muscle in the neonate, focusing on current knowledge of the role of amino acids in the activation of mTORC1 leading to mRNA translation. The role of the amino acid transporters, SNAT2, LAT1, and PAT, in the modulation of mTORC1 activation and the role of amino acids in the activation of putative regulators of mTORC1, i.e., raptor, Rheb, MAP4K3, Vps34, and Rag GTPases, are discussed.

Collaboration


Dive into the Teresa A. Davis's collaboration.

Top Co-Authors

Avatar

Agus Suryawan

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Hanh V. Nguyen

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Marta L. Fiorotto

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Renan A. Orellana

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Douglas G. Burrin

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Maria C. Gazzaneo

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Peter J. Reeds

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Scot R. Kimball

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Fiona A. Wilson

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jill A. Bush

The College of New Jersey

View shared research outputs
Researchain Logo
Decentralizing Knowledge