Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Teresa M. DesRochers is active.

Publication


Featured researches published by Teresa M. DesRochers.


PLOS ONE | 2013

Bioengineered 3D Human Kidney Tissue, a Platform for the Determination of Nephrotoxicity

Teresa M. DesRochers; Laura Suter; Adrian Roth; David L. Kaplan

The staggering cost of bringing a drug to market coupled with the extremely high failure rate of prospective compounds in early phase clinical trials due to unexpected human toxicity makes it imperative that more relevant human models be developed to better predict drug toxicity. Drug–induced nephrotoxicity remains especially difficult to predict in both pre-clinical and clinical settings and is often undetected until patient hospitalization. Current pre-clinical methods of determining renal toxicity include 2D cell cultures and animal models, both of which are incapable of fully recapitulating the in vivo human response to drugs, contributing to the high failure rate upon clinical trials. We have bioengineered a 3D kidney tissue model using immortalized human renal cortical epithelial cells with kidney functions similar to that found in vivo. These 3D tissues were compared to 2D cells in terms of both acute (3 days) and chronic (2 weeks) toxicity induced by Cisplatin, Gentamicin, and Doxorubicin using both traditional LDH secretion and the pre-clinical biomarkers Kim-1 and NGAL as assessments of toxicity. The 3D tissues were more sensitive to drug-induced toxicity and, unlike the 2D cells, were capable of being used to monitor chronic toxicity due to repeat dosing. The inclusion of this tissue model in drug testing prior to the initiation of phase I clinical trials would allow for better prediction of the nephrotoxic effects of new drugs.


Biomaterials | 2013

The influence of specific binding of collagen-silk chimeras to silk biomaterials on hMSC behavior

Bo An; Teresa M. DesRochers; Guokui Qin; Xiao-Xia Xia; Geetha Thiagarajan; Barbara Brodsky; David L. Kaplan

Collagen-like proteins in the bacteria Streptococcus pyogenes adopt a triple-helix structure with a thermal stability similar to that of animal collagens, can be expressed in high yield in Escherichia coli and can be easily modified through molecular biology techniques. However, potential applications for such recombinant collagens are limited by their lack of higher order structure to achieve the physical properties needed for most biomaterials. To overcome this problem, the S. pyogenes collagen domain was fused to a repetitive Bombyx mori silk consensus sequence, as a strategy to direct specific non-covalent binding onto solid silk materials whose superior stability, mechanical and material properties have been previously established. This approach resulted in the successful binding of these new collagen-silk chimeric proteins to silk films and porous scaffolds, and the binding affinity could be controlled by varying the number of repeats in the silk sequence. To explore the potential of collagen-silk chimera for regulating biological activity, integrin (Int) and fibronectin (Fn) binding sequences from mammalian collagens were introduced into the bacterial collagen domain. The attachment of bioactive collagen-silk chimeras to solid silk biomaterials promoted hMSC spreading and proliferation substantially in comparison to the controls. The ability to combine the biomaterial features of silk with the biological activities of collagen allowed more rapid cell interactions with silk-based biomaterials, improved regulation of stem cell growth and differentiation, as well as the formation of artificial extracellular matrices useful for tissue engineering applications.


Advanced Drug Delivery Reviews | 2014

Tissue-Engineered Kidney Disease Models

Teresa M. DesRochers; Erica Palma; David L. Kaplan

Renal disease represents a major health problem that often results in end-stage renal failure necessitating dialysis and eventually transplantation. Historically these diseases have been studied with patient observation and screening, animal models, and two-dimensional cell culture. In this review, we focus on recent advances in tissue engineered kidney disease models that have the capacity to compensate for the limitations of traditional modalities. The cells and materials utilized to develop these models are discussed and tissue engineered models of polycystic kidney disease, drug-induced nephrotoxicity, and the glomerulus are examined in detail. The application of these models has the potential to direct future disease treatments and preclinical drug development.


Journal of Investigative Dermatology | 2008

E-Cadherin Suppression Directs Cytoskeletal Rearrangement and Intraepithelial Tumor Cell Migration in 3D Human Skin Equivalents

Addy Alt-Holland; Yulia Shamis; Kathleen N. Riley; Teresa M. DesRochers; Norbert E. Fusenig; Ira M. Herman; Jonathan A. Garlick

The link between loss of cell-cell adhesion, the activation of cell migration, and the behavior of intraepithelial (IE) tumor cells during the early stages of skin cancer progression is not well understood. The current study characterized the migratory behavior of a squamous cell carcinoma cell line (HaCaT-II-4) upon E-cadherin suppression in both 2D, monolayer cultures and within human skin equivalents that mimic premalignant disease. The migratory behavior of tumor cells was first analyzed in 3D tissue context by developing a model that mimics transepithelial tumor cell migration. We show that loss of cell adhesion enabled migration of single, IE tumor cells between normal keratinocytes as a prerequisite for stromal invasion. To further understand this migratory behavior, E-cadherin-deficient cells were analyzed in 2D, monolayer cultures and displayed altered cytoarchitecture and enhanced membrane protrusive activity that was associated with circumferential actin organization and induction of the nonmuscle, beta actin isoform. These features were associated with increased motility and random, individual cell migration in response to scrape-wounding. Thus, loss of E-cadherin-mediated adhesion led to the acquisition of phenotypic properties that augmented cell motility and directed the transition from the precancer to cancer in skin-like tissues.


Epigenetics | 2012

The 3D tissue microenvironment modulates DNA methylation and E-cadherin expression in squamous cell carcinoma

Teresa M. DesRochers; Yulia Shamis; Addy Alt-Holland; Yasusei Kudo; Takashi Takata; Guangwen Wang; Laurie Jackson-Grusby; Jonathan A. Garlick

The microenvironment plays a significant role in human cancer progression. However, the role of the tumor microenvironment in the epigenetic control of genes critical to cancer progression remains unclear. As transient E-cadherin expression is central to many stages of neoplasia and is sensitive to regulation by the microenvironment, we have studied if microenvironmental control of E-cadherin expression is linked to transient epigenetic regulation of its promoter, contributing to the unstable and reversible expression of E-cadherin seen during tumor progression. We used 3D, bioengineered human tissue constructs that mimic the complexity of their in vivo counterparts, to show that the tumor microenvironment can direct the re-expression of E-cadherin through the reversal of methylation-mediated silencing of its promoter. This loss of DNA methylation results from the induction of homotypic cell-cell interactions as cells undergo tissue organization. E-cadherin re-expression is associated with multiple epigenetic changes including altered methylation of a small number of CpGs, specific histone modifications, and control of miR-148a expression. These epigenetic changes may drive the plasticity of E-cadherin-mediated adhesion in different tissue microenvironments during tumor cell invasion and metastasis. Thus, we suggest that epigenetic regulation is a mechanism through which tumor cell colonization of metastatic sites occurs as E-cadherin-expressing cells arise from E-cadherin-deficient cells.


Biomaterials | 2012

The regulation of cystogenesis in a tissue engineered kidney disease system by abnormal matrix interactions.

Balajikarthick Subramanian; Wei-Che Ko; Vikas Yadav; Teresa M. DesRochers; Ronald D. Perrone; Jing Zhou; David L. Kaplan

Autosomal Dominant Polycystic Kidney Disease (ADPKD) remains a major health care concern affecting several million patients worldwide and for which there is no specific treatment. We have employed a 3D tissue engineered disease-like system to emulate cystic structures in vitro and analyzed the extracellular matrix (ECM) interactions in it. The tissue system was developed by culturing normal or polycystin-1 silenced mouse Inner Medullary Collecting Duct (mIMCD) cells in ECM infused into 3D porous silk protein biomaterial scaffolds. In this system, the silk scaffolds provide slow degradation, biocompatibility, and maintain structure and transport for the 3D system, while the ECM molecules retain biological signaling. Using this 3D tissue system we provide evidence for an autocrine signaling loop involving abnormal matrix deposition (collagen type IV and laminin) and its integrin receptor subunit protein (Integrin-β1) in Pkd1 silenced mIMCD cells. In addition, we report that abnormal pericystic ECM interactions between matrix molecules and integrin subunit proteins regulate the rate of cystogenesis in the disease system. Molecular signaling showed abnormalities in cyclin proteins and cell-cycle progression upon Pkd1 knockdown. Importantly, disruption of the abnormal matrix interactions by an additional knockdown (double-silencing) of integrin-β1 in Pkd1 silenced cells reversed the abnormalities and reduced the rate of cystogenesis. Together, these findings indicate that abnormal matrix deposition and altered integrin profile distribution as observed in ADPKD and are critical in cystogenesis and should be considered a target for the development of therapeutics.


Macromolecular Bioscience | 2015

The Effect of Sterilization on Silk Fibroin Biomaterial Properties

Jelena Rnjak-Kovacina; Teresa M. DesRochers; Kelly A. Burke; David L. Kaplan

The effects of common sterilization techniques on the physical and biological properties of lyophilized silk fibroin sponges are described. Sterile silk fibroin sponges were cast using a pre-sterilized silk fibroin solution under aseptic conditions or post-sterilized via autoclaving, γ radiation, dry heat, exposure to ethylene oxide, or hydrogen peroxide gas plasma. Low average molecular weight and low concentration silk fibroin solutions could be sterilized via autoclaving or filtration without significant loses of protein. However, autoclaving reduced the molecular weight distribution of the silk fibroin protein solution, and silk fibroin sponges cast from autoclaved silk fibroin were significantly stiffer compared to sponges cast from unsterilized or filtered silk fibroin. When silk fibroin sponges were sterilized post-casting, autoclaving increased scaffold stiffness, while decreasing scaffold degradation rate in vitro. In contrast, γ irradiation accelerated scaffold degradation rate. Exposure to ethylene oxide significantly decreased cell proliferation rate on silk fibroin sponges, which was rescued by leaching ethylene oxide into PBS prior to cell seeding.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Cyst formation following disruption of intracellular calcium signaling.

Ivana Y. Kuo; Teresa M. DesRochers; Erica P. Kimmerling; Lily Nguyen; Barbara E. Ehrlich; David L. Kaplan

Significance Autosomal dominant polycystic kidney disease is the most common cause of fluid-filled cysts within the kidney. However, how cyst formation occurs is not well understood. It is thought that proteins disrupted by this disease, such as polycystin 2, change calcium signaling, leading to the formation of cysts. In this study, we grow LLC-PK1 cells in a protein gel environment to enable the study of cysts in culture, which cannot be observed in traditional cell culture techniques. We demonstrate that loss of intracellular calcium release channels result in cyst growth and are correlated with a loss of a functional cellular component known as the primary cilia. These results demonstrate that calcium signaling is an important component in cyst development. Mutations in polycystin 1 and 2 (PC1 and PC2) cause the common genetic kidney disorder autosomal dominant polycystic kidney disease (ADPKD). It is unknown how these mutations result in renal cysts, but dysregulation of calcium (Ca2+) signaling is a known consequence of PC2 mutations. PC2 functions as a Ca2+-activated Ca2+ channel of the endoplasmic reticulum. We hypothesize that Ca2+ signaling through PC2, or other intracellular Ca2+ channels such as the inositol 1,4,5-trisphosphate receptor (InsP3R), is necessary to maintain renal epithelial cell function and that disruption of the Ca2+ signaling leads to renal cyst development. The cell line LLC-PK1 has traditionally been used for studying PKD-causing mutations and Ca2+ signaling in 2D culture systems. We demonstrate that this cell line can be used in long-term (8 wk) 3D tissue culture systems. In 2D systems, knockdown of InsP3R results in decreased Ca2+ transient signals that are rescued by overexpression of PC2. In 3D systems, knockdown of either PC2 or InsP3R leads to cyst formation, but knockdown of InsP3R type 1 (InsP3R1) generated the largest cysts. InsP3R1 and InsP3R3 are differentially localized in both mouse and human kidney, suggesting that regional disruption of Ca2+ signaling contributes to cystogenesis. All cysts had intact cilia 2 wk after starting 3D culture, but the cells with InsP3R1 knockdown lost cilia as the cysts grew. Studies combining 2D and 3D cell culture systems will assist in understanding how mutations in PC2 that confer altered Ca2+ signaling lead to ADPKD cysts.


Infection and Immunity | 2015

Effects of Shiga Toxin Type 2 on a Bioengineered Three-Dimensional Model of Human Renal Tissue

Teresa M. DesRochers; Erica P. Kimmerling; Dakshina M. Jandhyala; Wassim El-Jouni; Jing Zhou; Cheleste M. Thorpe; John M. Leong; David L. Kaplan

ABSTRACT Shiga toxins (Stx) are a family of cytotoxic proteins that can cause hemolytic-uremic syndrome (HUS), a thrombotic microangiopathy, following infections by Shiga toxin-producing Escherichia coli (STEC). Renal failure is a key feature of HUS and a major cause of childhood renal failure worldwide. There are currently no specific therapies for STEC-associated HUS, and the mechanism of Stx-induced renal injury is not well understood primarily due to a lack of fully representative animal models and an inability to monitor disease progression on a molecular or cellular level in humans at early stages. Three-dimensional (3D) tissue models have been shown to be more in vivo-like in their phenotype and physiology than 2D cultures for numerous disease models, including cancer and polycystic kidney disease. It is unknown whether exposure of a 3D renal tissue model to Stx will yield a more in vivo-like response than 2D cell culture. In this study, we characterized Stx2-mediated cytotoxicity in a bioengineered 3D human renal tissue model previously shown to be a predictor of drug-induced nephrotoxicity and compared its response to Stx2 exposure in 2D cell culture. Our results demonstrate that although many mechanistic aspects of cytotoxicity were similar between 3D and 2D, treatment of the 3D tissues with Stx resulted in an elevated secretion of the kidney injury marker 1 (Kim-1) and the cytokine interleukin-8 compared to the 2D cell cultures. This study represents the first application of 3D tissues for the study of Stx-mediated kidney injury.


Journal for ImmunoTherapy of Cancer | 2015

Macrophage incorporation into a 3D perfusion tri-culture model of human breast cancer

Teresa M. DesRochers; Lillia Holmes; Lauren O'Donnell; Christina Mattingly; Stephen Shuford; Mark O'Rourke; Mary Rippon; William J. Edenfield; Matthew R. Gevaert; David Orr; Howland E. Crosswell

Meeting abstracts Immunotherapy has recently shown promising clinical activity in multiple tumor types but standard in vitro immuno-oncology models for preclinical and clinical predictivity are lacking. Macrophages have been shown to have both tumor promoting and tumor preventing properties

Collaboration


Dive into the Teresa M. DesRochers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeff Edenfield

Greenville Health System

View shared research outputs
Top Co-Authors

Avatar

David Schammel

Greenville Health System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary Rippon

Greenville Health System

View shared research outputs
Top Co-Authors

Avatar

Michael T. Lewis

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge