Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Teresa N. Hollingsworth is active.

Publication


Featured researches published by Teresa N. Hollingsworth.


Nature | 2011

Carbon loss from an unprecedented Arctic tundra wildfire

Michelle C. Mack; M. Syndonia Bret-Harte; Teresa N. Hollingsworth; Randi R. Jandt; Edward A. G. Schuur; Gaius R. Shaver; David Verbyla

Arctic tundra soils store large amounts of carbon (C) in organic soil layers hundreds to thousands of years old that insulate, and in some cases maintain, permafrost soils. Fire has been largely absent from most of this biome since the early Holocene epoch, but its frequency and extent are increasing, probably in response to climate warming. The effect of fires on the C balance of tundra landscapes, however, remains largely unknown. The Anaktuvuk River fire in 2007 burned 1,039 square kilometres of Alaska’s Arctic slope, making it the largest fire on record for the tundra biome and doubling the cumulative area burned since 1950 (ref. 5). Here we report that tundra ecosystems lost 2,016 ± 435 g C m−2 in the fire, an amount two orders of magnitude larger than annual net C exchange in undisturbed tundra. Sixty per cent of this C loss was from soil organic matter, and radiocarbon dating of residual soil layers revealed that the maximum age of soil C lost was 50 years. Scaled to the entire burned area, the fire released approximately 2.1 teragrams of C to the atmosphere, an amount similar in magnitude to the annual net C sink for the entire Arctic tundra biome averaged over the last quarter of the twentieth century. The magnitude of ecosystem C lost by fire, relative to both ecosystem and biome-scale fluxes, demonstrates that a climate-driven increase in tundra fire disturbance may represent a positive feedback, potentially offsetting Arctic greening and influencing the net C balance of the tundra biome.


Ecological Monographs | 2014

A first comprehensive census of fungi in soil reveals both hyperdiversity and fine‐scale niche partitioning

D. Lee Taylor; Teresa N. Hollingsworth; Jack W. McFarland; Niall J. Lennon; Chad Nusbaum; Roger W. Ruess

Fungi play key roles in ecosystems as mutualists, pathogens, and decomposers. Current estimates of global species richness are highly uncertain, and the importance of stochastic vs. deterministic forces in the assembly of fungal communities is unknown. Molecular studies have so far failed to reach saturated, comprehensive estimates of fungal diversity. To obtain a more accurate estimate of global fungal diversity, we used a direct molecular approach to census diversity in a boreal ecosystem with precisely known plant diversity, and we carefully evaluated adequacy of sampling and accuracy of species delineation. We achieved the first exhaustive enumeration of fungi in soil, recording 1002 taxa in this system. We show that the fungus : plant ratio in Picea mariana forest soils from interior Alaska is at least 17:1 and is regionally stable. A global extrapolation of this ratio would suggest 6 million species of fungi, as opposed to leading estimates ranging from 616 000 to 1.5 million. We also find that clos...


Canadian Journal of Forest Research | 2010

Resilience of Alaska's Boreal Forest to Climatic Change

F. S. Chapin; A. D. McGuire; Roger W. Ruess; Teresa N. Hollingsworth; Michelle C. Mack; Jill F. Johnstone; Eric S. Kasischke; Eugénie S. Euskirchen; Jeremy B. Jones; M. T. Jorgenson; Knut Kielland; Gary P. Kofinas; Merritt R. Turetsky; John Yarie; Andrea H. Lloyd; D. L. Taylor

This paper assesses the resilience of Alaska’s boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters traveling on river ice. These changes have modified key structural features, feedbacks, and interactions in the boreal forest, including reduced effects of upland permafrost on regional hydrology, expansion of boreal forest into tundra, and amplification of climate warming because of reduced albedo (shorter winter season) and carbon release from wildfires. Other temperature-sensitive processes for which no trends have been detected include composition of plant and microbial communities, long-term landscape-scale change in carbon stocks, stream discharge, mammalian population dynamics, and river access and subsistence opportunities for rural indige...


Environmental Research Letters | 2016

Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment

Benjamin W. Abbott; Jeremy B. Jones; Edward A. G. Schuur; F. Stuart Chapin; William B. Bowden; M. Syndonia Bret-Harte; Howard E. Epstein; Mike D. Flannigan; Tamara K. Harms; Teresa N. Hollingsworth; Michelle C. Mack; A. David McGuire; Susan M. Natali; Adrian V. Rocha; Suzanne E. Tank; Merritt R. Turetsky; Jorien E. Vonk; Kimberly P. Wickland; George R. Aiken; Heather D. Alexander; Rainer M. W. Amon; Brian W. Benscoter; Yves Bergeron; Kevin Bishop; Olivier Blarquez; Ben Bond-Lamberty; Amy L. Breen; Ishi Buffam; Yihua Cai; Christopher Carcaillet

As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release w ...


International Journal of Applied Earth Observation and Geoinformation | 2012

Estimating aboveground biomass in interior Alaska with Landsat data and field measurements

Lei Ji; Bruce K. Wylie; Dana R. Nossov; Birgit E. Peterson; Mark P. Waldrop; Jack W. McFarland; Jennifer Rover; Teresa N. Hollingsworth

a b s t r a c t Terrestrial plant biomass is a key biophysical parameter required for understanding ecological systems in Alaska. An accurate estimation of biomass at a regional scale provides an important data input for ecological modeling in this region. In this study, we created an aboveground biomass (AGB) map at 30-m resolution for the Yukon Flats ecoregion of interior Alaska using Landsat data and field measurements. Tree, shrub, and herbaceous AGB data in both live and dead forms were collected in summers and autumns of 2009 and 2010. Using the Landsat-derived spectral variables and the field AGB data, we generated a regression model and applied this model to map AGB for the ecoregion. A 3-fold cross-validation indicated that the AGB estimates had a mean absolute error of 21.8 Mg/ha and a mean bias error of 5.2 Mg/ha. Additionally, we validated the mapping results using an airborne lidar dataset acquired for a portion of the ecoregion. We found a significant relationship between the lidar-derived canopy height and the Landsat-derived AGB (R 2 = 0.40). The AGB map showed that 90% of the ecoregion had AGB values ranging from 10 Mg/ha to 134 Mg/ha. Vegetation types and fires were the primary factors controlling the spatial AGB patterns in this ecoregion. Published by Elsevier B.V.


Ecosphere | 2011

Evidence and implications of recent and projected climate change in Alaska's forest ecosystems

Jane M. Wolken; Teresa N. Hollingsworth; T. Scott Rupp; Stuart Iii Chapin; Sarah F. Trainor; Tara M. Barrett; Patrick F. Sullivan; A. David McGuire; Eugénie S. Euskirchen; Paul E. Hennon; Erik A. Beever; Jeff S. Conn; Lisa K. Crone; David V. D'Amore; Nancy Fresco; T. A. Hanley; Knut Kielland; James J. Kruse; Trista Patterson; Edward A. G. Schuur; David Verbyla; John Yarie

The structure and function of Alaskas forests have changed significantly in response to a changing climate, including alterations in species composition and climate feedbacks (e.g., carbon, radiation budgets) that have important regional societal consequences and human feedbacks to forest ecosystems. In this paper we present the first comprehensive synthesis of climate-change impacts on all forested ecosystems of Alaska, highlighting changes in the most critical biophysical factors of each region. We developed a conceptual framework describing climate drivers, biophysical factors and types of change to illustrate how the biophysical and social subsystems of Alaskan forests interact and respond directly and indirectly to a changing climate. We then identify the regional and global implications to the climate system and associated socio-economic impacts, as presented in the current literature. Projections of temperature and precipitation suggest wildfire will continue to be the dominant biophysical factor in the Interior-boreal forest, leading to shifts from conifer- to deciduous-dominated forests. Based on existing research, projected increases in temperature in the Southcentral- and Kenai-boreal forests will likely increase the frequency and severity of insect outbreaks and associated wildfires, and increase the probability of establishment by invasive plant species. In the Coastal-temperate forest region snow and ice is regarded as the dominant biophysical factor. With continued warming, hydrologic changes related to more rapidly melting glaciers and rising elevation of the winter snowline will alter discharge in many rivers, which will have important consequences for terrestrial and marine ecosystem productivity. These climate-related changes will affect plant species distribution and wildlife habitat, which have regional societal consequences, and trace-gas emissions and radiation budgets, which are globally important. Our conceptual framework facilitates assessment of current and future consequences of a changing climate, emphasizes regional differences in biophysical factors, and points to linkages that may exist but that currently lack supporting research. The framework also serves as a visual tool for resource managers and policy makers to develop regional and global management strategies and to inform policies related to climate mitigation and adaptation.


PLOS ONE | 2013

Fire Severity Filters Regeneration Traits to Shape Community Assembly in Alaska's Boreal Forest

Teresa N. Hollingsworth; Jill F. Johnstone; Emily L. Bernhardt; F. Stuart Chapin

Disturbance can both initiate and shape patterns of secondary succession by affecting processes of community assembly. Thus, understanding assembly rules is a key element of predicting ecological responses to changing disturbance regimes. We measured the composition and trait characteristics of plant communities early after widespread wildfires in Alaska to assess how variations in disturbance characteristics influenced the relative success of different plant regeneration strategies. We compared patterns of post-fire community composition and abundance of regeneration traits across a range of fire severities within a single pre-fire forest type– black spruce forests of Interior Alaska. Patterns of community composition, as captured by multivariate ordination with nonmetric multidimensional scaling, were primarily related to gradients in fire severity (biomass combustion and residual vegetation) and secondarily to gradients in soil pH and regional climate. This pattern was apparent in both the full dataset (n = 87 sites) and for a reduced subset of sites (n = 49) that minimized the correlation between site moisture and fire severity. Changes in community composition across the fire-severity gradient in Alaska were strongly correlated to variations in plant regeneration strategy and rooting depth. The tight coupling of fire severity with regeneration traits and vegetation composition after fire supports the hypothesis that disturbance characteristics influence patterns of community assembly by affecting the relative success of different regeneration strategies. This study further demonstrated that variations in disturbance characteristics can dominate over environmental constraints in determining early patterns of community assembly. By affecting the success of regeneration traits, changes in fire regime directly shape the outcomes of community assembly, and thus may override the effects of slower environmental change on boreal forest composition.


Ecosystems | 2008

Plant Community Composition as a Predictor of Regional Soil Carbon Storage in Alaskan Boreal Black Spruce Ecosystems

Teresa N. Hollingsworth; Edward A. G. Schuur; F. S. Chapin; Marilyn D. Walker

The boreal forest is the largest terrestrial biome in North America and holds a large portion of the world’s reactive soil carbon. Therefore, understanding soil carbon accumulation on a landscape or regional scale across the boreal forest is useful for predicting future soil carbon storage. Here, we examined the relationship between floristic composition and ecosystem parameters, such as soil carbon pools, the carbon-to-nitrogen (C/N) ratio of live black spruce needles, and normalized basal area increment (NBAI) of trees in black spruce communities, the most widespread forest type in the boreal forest of Alaska. Variability in ecosystem properties among black spruce stands was as large as that which had previously been documented among all forest types in the central interior of Alaska; we found an eightfold range in NBAI and fivefold range in mineral soil carbon and nitrogen pools. Acidic black spruce communities had significantly more carbon in the organic soil horizon than did nonacidic black spruce communities, but did not differ in any other measured ecosystem parameter. We explained 48% of the variation in total soil carbon with a combination of plant community indices and abiotic and biotic factors. Plant community composition was at least as effective as any single environmental factor or stand characteristic in predicting soil C pools in Alaskan black spruce ecosystems. We conclude that among the community properties analyzed, the presence of key groups of species, overall species composition, and diversity of certain functional types, especially Sphagnum moss species, are important predictors of soil carbon sequestration in the black spruce forest type.


BioScience | 2012

Scenario Studies as a Synthetic and Integrative Research Activity for Long-Term Ecological Research

Jonathan R. Thompson; Arnim Wiek; Frederick J. Swanson; Stephen R. Carpenter; Nancy Fresco; Teresa N. Hollingsworth; Thomas A. Spies; David R. Foster

Scenario studies have emerged as a powerful approach for synthesizing diverse forms of research and for articulating and evaluating alternative socioecological futures. Unlike predictive modeling, scenarios do not attempt to forecast the precise or probable state of any variable at a given point in the future. Instead, comparisons among a set of contrasting scenarios are used to understand the systemic relationships and dynamics of complex socioecological systems and to define a range of possibilities and uncertainties in quantitative and qualitative terms. We describe five examples of scenario studies affiliated with the US Long Term Ecological Research (LTER) Network and evaluate them in terms of their ability to advance the LTER Networks capacity for conducting science, promoting social and ecological science synthesis, and increasing the saliency of research through sustained outreach activities. We conclude with an argument that scenario studies should be advanced programmatically within large socioecological research programs to encourage prescient thinking in an era of unprecedented global change.


Canadian Journal of Forest Research | 2010

Twenty-five years of vegetation change along a putative successional chronosequence on the Tanana River, Alaska.

Teresa N. Hollingsworth; Andrea H. Lloyd; Dana R. Nossov; Roger W. Ruess; Brian Charlton; Knut Kielland

Along the Tanana River floodplain, several turning points have been suggested to characterize the changes in ecosystem structure and function that accompany plant community changes through primary ...

Collaboration


Dive into the Teresa N. Hollingsworth's collaboration.

Top Co-Authors

Avatar

F. Stuart Chapin

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Roger W. Ruess

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Jill F. Johnstone

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Lee Taylor

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Dana R. Nossov

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Knut Kielland

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. David McGuire

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

David Verbyla

University of Alaska Fairbanks

View shared research outputs
Researchain Logo
Decentralizing Knowledge