Tereza Ševčíková
University of Ostrava
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tereza Ševčíková.
Scientific Reports | 2015
Tereza Ševčíková; Aleš Horák; Vladimír Klimeš; Veronika Zbránková; Elif Demir-Hilton; Sebastian Sudek; Jerry Jenkins; Jeremy Schmutz; Pavel Přibyl; Jan Fousek; Čestmír Vlček; B. Franz Lang; Miroslav Oborník; Alexandra Z. Worden; Marek Eliáš
Algae with secondary plastids of a red algal origin, such as ochrophytes (photosynthetic stramenopiles), are diverse and ecologically important, yet their evolutionary history remains controversial. We sequenced plastid genomes of two ochrophytes, Ochromonas sp. CCMP1393 (Chrysophyceae) and Trachydiscus minutus (Eustigmatophyceae). A shared split of the clpC gene as well as phylogenomic analyses of concatenated protein sequences demonstrated that chrysophytes and eustigmatophytes form a clade, the Limnista, exhibiting an unexpectedly elevated rate of plastid gene evolution. Our analyses also indicate that the root of the ochrophyte phylogeny falls between the recently redefined Khakista and Phaeista assemblages. Taking advantage of the expanded sampling of plastid genome sequences, we revisited the phylogenetic position of the plastid of Vitrella brassicaformis, a member of Alveolata with the least derived plastid genome known for the whole group. The results varied depending on the dataset and phylogenetic method employed, but suggested that the Vitrella plastids emerged from a deep ochrophyte lineage rather than being derived vertically from a hypothetical plastid-bearing common ancestor of alveolates and stramenopiles. Thus, we hypothesize that the plastid in Vitrella, and potentially in other alveolates, may have been acquired by an endosymbiosis of an early ochrophyte.
Scientific Reports | 2016
Pavel Flegontov; Anzhelika Butenko; Sergei Firsov; Natalya Kraeva; Marek Eliáš; Mark C. Field; Dmitry A. Filatov; Olga Flegontova; Evgeny S. Gerasimov; Jana Hlavacova; Aygul Ishemgulova; Andrew P. Jackson; Steve Kelly; Alexei Y. Kostygov; Maria D. Logacheva; Dmitri A. Maslov; Fred R. Opperdoes; Amanda O’Reilly; Jovana Sadlova; Tereza Ševčíková; Divya Venkatesh; Čestmír Vlček; Petr Volf; Jan Votýpka; Kristína Záhonová; Vyacheslav Yurchenko; Julius Lukeš
Many high-quality genomes are available for dixenous (two hosts) trypanosomatid species of the genera Trypanosoma, Leishmania, and Phytomonas, but only fragmentary information is available for monoxenous (single-host) trypanosomatids. In trypanosomatids, monoxeny is ancestral to dixeny, thus it is anticipated that the genome sequences of the key monoxenous parasites will be instrumental for both understanding the origin of parasitism and the evolution of dixeny. Here, we present a high-quality genome for Leptomonas pyrrhocoris, which is closely related to the dixenous genus Leishmania. The L. pyrrhocoris genome (30.4 Mbp in 60 scaffolds) encodes 10,148 genes. Using the L. pyrrhocoris genome, we pinpointed genes gained in Leishmania. Among those genes, 20 genes with unknown function had expression patterns in the Leishmania mexicana life cycle suggesting their involvement in virulence. By combining differential expression data for L. mexicana, L. major and Leptomonas seymouri, we have identified several additional proteins potentially involved in virulence, including SpoU methylase and U3 small nucleolar ribonucleoprotein IMP3. The population genetics of L. pyrrhocoris was also addressed by sequencing thirteen strains of different geographic origin, allowing the identification of 1,318 genes under positive selection. This set of genes was significantly enriched in components of the cytoskeleton and the flagellum.
Current Biology | 2016
Kristína Záhonová; Alexei Y. Kostygov; Tereza Ševčíková; Vyacheslav Yurchenko; Marek Eliáš
A limited number of non-canonical genetic codes have been described in eukaryotic nuclear genomes. Most involve reassignment of one or two termination codons as sense ones [1-4], but no code variant is known that would have reassigned all three termination codons. Here, we describe such a variant that we discovered in a clade of trypanosomatids comprising nominal Blastocrithidia species. In these protists, UGA has been reassigned to encode tryptophan, while UAG and UAA (UAR) have become glutamate encoding. Strikingly, UAA and, less frequently, UAG also serve as bona fide termination codons. The release factor eRF1 in Blastocrithidia contains a substitution of a conserved serine residue predicted to decrease its affinity to UGA, which explains why this triplet can be read as a sense codon. However, the molecular basis for the dual interpretation of UAR codons remains elusive. Our findings expand the limits of comprehension of one of the fundamental processes in molecular biology.
Journal of Eukaryotic Microbiology | 2016
Vyacheslav Yurchenko; Alexei Y. Kostygov; Jolana Havlová; Anastasiia Grybchuk-Ieremenko; Tereza Ševčíková; Julius Lukeš; Jan Ševčík; Jan Votýpka
In this study, we surveyed six species of cockroaches, two synanthropic (i.e. ecologically associated with humans) and four wild, for intestinal trypanosomatid infections. Only the wild cockroach species were found to be infected, with flagellates of the genus Herpetomonas. Two distinct genotypes were documented, one of which was described as a new species, Herpetomonas tarakana sp. n. We also propose a revision of the genus Herpetomonas and creation of a new subfamily, Phytomonadinae, to include Herpetomonas, Phytomonas, and a newly described genus Lafontella n. gen. (type species Lafontella mariadeanei comb. n.), which can be distinguished from others by morphological and molecular traits.
Open Biology | 2016
Tatiana Yurchenko; Tereza Ševčíková; Hynek Strnad; Anzhelika Butenko; Marek Eliáš
Acquisition of genes by plastid genomes (plastomes) via horizontal gene transfer (HGT) seems to be a rare phenomenon. Here, we report an interesting case of HGT revealed by sequencing the plastomes of the eustigmatophyte algae Monodopsis sp. MarTras21 and Vischeria sp. CAUP Q 202. These plastomes proved to harbour a unique cluster of six genes, most probably acquired from a bacterium of the phylum Bacteroidetes, with homologues in various bacteria, typically organized in a conserved uncharacterized putative operon. Sequence analyses of the six proteins encoded by the operon yielded the following annotation for them: (i) a novel family without discernible homologues; (ii) a new family within the superfamily of metallo-dependent hydrolases; (iii) a novel subgroup of the UbiA superfamily of prenyl transferases; (iv) a new clade within the sugar phosphate cyclase superfamily; (v) a new family within the xylose isomerase-like superfamily; and (vi) a hydrolase for a phosphate moiety-containing substrate. We suggest that the operon encodes enzymes of a pathway synthesizing an isoprenoid–cyclitol-derived compound, possibly an antimicrobial or other protective substance. To the best of our knowledge, this is the first report of an expansion of the metabolic capacity of a plastid mediated by HGT into the plastid genome.
Journal of Systematics and Evolution | 2013
Lira A. Gaysina; Yvonne Němcová; Pavel Škaloud; Tereza Ševčíková; Marek Eliáš
Soil hosts diverse communities of photosynthetic eukaryotes (algae) that have not yet been fully explored. Here we describe an interesting coccoid green alga isolated from a soil sample from a forest‐steppe in South Urals (Bashkortostan, Russia) that, based on a phylogenetic analysis of 18S rRNA gene sequence, appears to represent a new phylogenetic lineage related to the genus Leptosira within the class Trebouxiophyceae. This new alga is characterized by uninucleate cells with a shape ranging from spherical to ellipsoid or egg‐like, occurring solitary or more often grouped in irregular masses or colonies. Remarkably, cells with a characteristic pyriform shape are encountered in cultures grown on a solid medium. The cells harbour a single pyrenoid‐lacking parietal chloroplast with the margin undulated or forming finger‐like projections; in mature cells the chloroplast becomes divided by deep incisions into more or less separate lobes. Transmission electron microscopy of vegetative cells revealed an unprecedented structure in the form of a cluster of microfibrils located in the cytoplasm near the plasma membrane, often appressed to the chloroplast. Reproduction takes place via autospores or biflagellated zoospores. The unique suite of characters of our isolate distinguishes it from previously described coccoid green algae and suggests that it should be classified as a new species in a new genus; we propose it be named Chloropyrula uraliensis.
Zoologica Scripta | 2014
Jan Ševčík; David Kaspřák; Michal Mantič; Tereza Ševčíková; Andrea Tóthová
The molecular phylogeny of the family Diadocidiidae (Diptera: Sciaroidea) is reconstructed based on the combined analysis of four mitochondrial (12S, 16S, COI, cytB) and two nuclear (28S, ITS2) gene markers. All the analyses strongly support Diadocidiidae as a monophyletic group. Genus Diadocidia Ruthe, 1831 includes monophyletic subgenera Diadocidia s. str. and Taidocidia Papp and Ševčík (Acta Zoologica Academiae Scientiarum Hungaricae, 51, 2005b, 329). The monophyly of Adidocidia Laštovka & Matile, 1972 was not confirmed. The position of Diadocidiidae and relationships of the families within the infraorder Bibionomorpha are demonstrated in the analyses based on three gene markers (28S, 12S and 16S). The Bayesian and maximum likelihood analyses of 10 families of Bibionomorpha revealed Sciaridae as the closest relative of Diadocidiidae. Most of the currently recognised extant families of Bibionomorpha proved to be monophyletic. The family Keroplatidae revealed as paraphyletic, with the genera of Macrocerinae being more related to Cecidomyiidae, but the support is low.
Genome Biology and Evolution | 2016
Tereza Ševčíková; Vladimír Klimeš; Veronika Zbránková; Hynek Strnad; Miluše Hroudová; Čestmír Vlček; Marek Eliáš
Eustigmatophyceae (Ochrophyta, Stramenopiles) is a small algal group with species of the genus Nannochloropsis being its best studied representatives. Nuclear and organellar genomes have been recently sequenced for several Nannochloropsis spp., but phylogenetically wider genomic studies are missing for eustigmatophytes. We sequenced mitochondrial genomes (mitogenomes) of three species representing most major eustigmatophyte lineages, Monodopsis sp. MarTras21, Vischeria sp. CAUP Q 202 and Trachydiscus minutus, and carried out their comparative analysis in the context of available data from Nannochloropsis and other stramenopiles, revealing a number of noticeable findings. First, mitogenomes of most eustigmatophytes are highly collinear and similar in the gene content, but extensive rearrangements and loss of three otherwise ubiquitous genes happened in the Vischeria lineage; this correlates with an accelerated evolution of mitochondrial gene sequences in this lineage. Second, eustigmatophytes appear to be the only ochrophyte group with the Atp1 protein encoded by the mitogenome. Third, eustigmatophyte mitogenomes uniquely share a truncated nad11 gene encoding only the C-terminal part of the Nad11 protein, while the N-terminal part is encoded by a separate gene in the nuclear genome. Fourth, UGA as a termination codon and the cognate release factor mRF2 were lost from mitochondria independently by the Nannochloropsis and T. minutus lineages. Finally, the rps3 gene in the mitogenome of Vischeria sp. is interrupted by the UAG codon, but the genome includes a gene for an unusual tRNA with an extended anticodon loop that we speculate may serve as a suppressor tRNA to properly decode the rps3 gene.
The ISME Journal | 2018
Tatiana Yurchenko; Tereza Ševčíková; Pavel Přibyl; Khalid El Karkouri; Vladimír Klimeš; Raquel Amaral; Veronika Zbránková; Eunsoo Kim; Didier Raoult; Lília M.A. Santos; Marek Eliáš
Rickettsiales are obligate intracellular bacteria originally found in metazoans, but more recently recognized as widespread endosymbionts of various protists. One genus was detected also in several green algae, but reports on rickettsialean endosymbionts in other algal groups are lacking. Here we show that several distantly related eustigmatophytes (coccoid algae belonging to Ochrophyta, Stramenopiles) are infected by Candidatus Phycorickettsia gen. nov., a new member of the family Rickettsiaceae. The genome sequence of Ca. Phycorickettsia trachydisci sp. nov., an endosymbiont of Trachydiscus minutus CCALA 838, revealed genomic features (size, GC content, number of genes) typical for other Rickettsiales, but some unusual aspects of the gene content were noted. Specifically, Phycorickettsia lacks genes for several components of the respiration chain, haem biosynthesis pathway, or c-di-GMP-based signalling. On the other hand, it uniquely harbours a six-gene operon of enigmatic function that we recently reported from plastid genomes of two distantly related eustigmatophytes and from various non-rickettsialean bacteria. Strikingly, the eustigmatophyte operon is closely related to the one from Phycorickettsia, suggesting a gene transfer event between the endosymbiont and host lineages in early eustigmatophyte evolution. We hypothesize an important role of the operon in the physiology of Phycorickettsia infection and a long-term eustigmatophyte-Phycorickettsia coexistence.
Journal of Clinical Pathology | 2018
Zuzana Kufova; Tereza Ševčíková; Jaroslav Januska; Petr Vojta; Arpad Boday; Pavla Vanickova; Jana Filipova; Katerina Growkova; Tomas Jelinek; Marian Hajduch; Roman Hájek
Aims Amyloidosis is caused by deposition of abnormal protein fibrils, leading to damage of organ function. Hereditary amyloidosis represents a monogenic disease caused by germline mutations in 11 amyloidogenic precursor protein genes. One of the important but non-specific symptoms of amyloidosis is hypertrophic cardiomyopathy. Diagnostics of hereditary amyloidosis is complicated and the real cause can remain overlooked. We aimed to design hereditary amyloidosis gene panel and to introduce new next-generation sequencing (NGS) approach to investigate hereditary amyloidosis in a cohort of patients with hypertrophic cardiomyopathy of unknown significance. Methods Design of target enrichment DNA library preparation using Haloplex Custom Kit containing 11 amyloidogenic genes was followed by MiSeq Illumina sequencing and bioinformatics identification of germline variants using tool VarScan in a cohort of 40 patients. Results We present design of NGS panel for 11 genes (TTR, FGA, APOA1, APOA2, LYZ, GSN, CST3, PRNP, APP, B2M, ITM2B) connected to various forms of amyloidosis. We detected one mutation, which is responsible for hereditary amyloidosis. Some other single nucleotide variants are so far undescribed or rare variants or represent common polymorphisms in European population. Conclusions We report one positive case of hereditary amyloidosis in a cohort of patients with hypertrophic cardiomyopathy of unknown significance and set up first panel for NGS in hereditary amyloidosis. This work may facilitate successful implementation of the NGS method by other researchers or clinicians and may improve the diagnostic process after validation.