Zuzana Kufova
University of Ostrava
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zuzana Kufova.
Critical Reviews in Oncology Hematology | 2016
Tomas Jelinek; Zuzana Kufova; Roman Hájek
Immunoglobulin light chain amyloidosis (AL amyloidosis) is indeed a rare plasma cell disorder, yet the most common of the systemic amyloidoses. The choice of adequate treatment modality is complicated and depends dominantly on the risk stratification of these fragile patients. Immunomodulatory drugs (IMiDs) are currently used in newly diagnosed patients as well as in salvage therapy in relapsed/refractory patients. IMiDs have a pleiotropic effect on malignant cells and the exact mechanism of their action has been described recently. Thalidomide is the most ancient representative, effective but toxic. Lenalidomide seems to be more effective, nevertheless the toxicity remains high, especially in patients with renal insufficiency. Pomalidomide is the newest IMiD used in this indication with a good balance between efficacy and tolerable toxicity and represents the most promising compound. This review is focused on the evaluation of all three representatives of IMiDs and their roles in the treatment of this malignant disorder.
Haematologica | 2017
Aneta Mikulášová; Christopher P. Wardell; Alexander Murison; Eileen Boyle; Graham Jackson; Jan Smetana; Zuzana Kufova; Ludek Pour; Viera Sandecká; Martina Almáši; Pavla Všianská; Evzen Gregora; Petr Kuglík; Roman Hájek; Faith E. Davies; Gareth J. Morgan; Brian A. Walker
Monoclonal gammopathy of undetermined significance is a pre-malignant precursor of multiple myeloma with a 1% risk of progression per year. Although targeted analyses have shown the presence of specific genetic abnormalities such as IGH translocations, RB1 deletion, 1q gain, hyperdiploidy or RAS gene mutations, little is known about the molecular mechanism of malignant transformation. We performed whole exome sequencing together with comparative genomic hybridization plus single nucleotide polymorphism array analysis in 33 flow-cytometry-separated abnormal plasma cell samples from patients with monoclonal gammopathy of undetermined significance to describe somatic gene mutations and chromosome changes at the genome-wide level. Non-synonymous mutations and copy-number alterations were present in 97.0% and in 60.6% of cases, respectively. Importantly, the number of somatic mutations was significantly lower in monoclonal gammopathy of undetermined significance than in myeloma (P<10−4) and we identified six genes that were significantly mutated in myeloma (KRAS, NRAS, DIS3, HIST1H1E, EGR1 and LTB) within the monoclonal gammopathy of undetermined significance dataset. We also found a positive correlation with increasing chromosome changes and somatic gene mutations. IGH translocations, comprising t(4;14), t(11;14), t(14;16) and t(14;20), were present in 27.3% of cases and in a similar frequency to myeloma, consistent with the primary lesion hypothesis. MYC translocations and TP53 deletions or mutations were not detected in samples from patients with monoclonal gammopathy of undetermined significance, indicating that they may be drivers of progression to myeloma. Data from this study show that monoclonal gammopathy of undetermined significance is genetically similar to myeloma, however overall genetic abnormalities are present at significantly lower levels in monoclonal gammopathy of undetermined significant than in myeloma.
European Journal of Haematology | 2016
Aneta Mikulášová; Jan Smetana; Markéta Wayhelová; Helena Janyšková; Viera Sandecká; Zuzana Kufova; Martina Almáši; Jiri Jarkovsky; Evzen Gregora; Petr Kessler; Marek Wrobel; Brian A. Walker; Christopher P. Wardell; Gareth J. Morgan; Roman Hájek; Petr Kuglík
Monoclonal gammopathy of undetermined significance (MGUS) is a benign condition with an approximate 1% annual risk of symptomatic plasma cell disorder development, mostly to multiple myeloma (MM). We performed genomewide screening of copy‐number alterations (CNAs) in 90 MGUS and 33 MM patients using high‐density DNA microarrays. We identified CNAs in a smaller proportion of MGUS (65.6%) than in MM (100.0%, P = 1.31 × 10−5) and showed median number of CNAs is lower in MGUS (3, range 0–22) than in MM (13, range 4–38, P = 1.82 × 10−10). In the MGUS cohort, the most frequent losses were located at 1p (5.6%), 6q (6.7%), 13q (30.0%), 14q (14.4%), 16q (8.9%), 21q (5.6%), and gains at 1q (23.3%), 2p (6.7%), 6p (13.3%), and Xq (7.8%). Hyperdiploidy was detected in 38.9% of MGUS cases, and the most frequent whole chromosome gains were 3 (25.6%), 5 (23.3%), 9 (37.8%), 15 (23.3%), and 19 (32.2%). We also identified CNAs such as 1p, 6q, 8p, 12p, 13q, 16q losses, 1q gain and hypodiploidy, which are potentially associated with an adverse prognosis in MGUS. In summary, we showed that MGUS is similar to MM in that it is a genetically heterogeneous disorder, but overall cytogenetic instability is lower than in MM, which confirms that genetic abnormalities play important role in monoclonal gammopathies.
Leukemia Research | 2015
Jana Filipova; Lucie Rihova; Pavla Všianská; Zuzana Kufova; Elena Kryukova; Fedor Kryukov; Roman Hájek
Flow cytometry (FCM) has found its application in clinical diagnosis and evaluation of monoclonal gammopathies (MG). Although, research has been mainly focused on multiple myeloma (MM), nowadays FCM becomes to be potential tool in the field of AL amyloidosis. Clonal plasma cells identification and specific phenotype profile detection is important for diagnosis, monitoring and prognosis of AL amyloidosis. Therefore, FCM could be a perspective method for study not only MM but also AL amyloidosis. This review provides an overview and possibilities of FCM application in AL amyloidosis.
Journal of Clinical Pathology | 2018
Zuzana Kufova; Tereza Ševčíková; Jaroslav Januska; Petr Vojta; Arpad Boday; Pavla Vanickova; Jana Filipova; Katerina Growkova; Tomas Jelinek; Marian Hajduch; Roman Hájek
Aims Amyloidosis is caused by deposition of abnormal protein fibrils, leading to damage of organ function. Hereditary amyloidosis represents a monogenic disease caused by germline mutations in 11 amyloidogenic precursor protein genes. One of the important but non-specific symptoms of amyloidosis is hypertrophic cardiomyopathy. Diagnostics of hereditary amyloidosis is complicated and the real cause can remain overlooked. We aimed to design hereditary amyloidosis gene panel and to introduce new next-generation sequencing (NGS) approach to investigate hereditary amyloidosis in a cohort of patients with hypertrophic cardiomyopathy of unknown significance. Methods Design of target enrichment DNA library preparation using Haloplex Custom Kit containing 11 amyloidogenic genes was followed by MiSeq Illumina sequencing and bioinformatics identification of germline variants using tool VarScan in a cohort of 40 patients. Results We present design of NGS panel for 11 genes (TTR, FGA, APOA1, APOA2, LYZ, GSN, CST3, PRNP, APP, B2M, ITM2B) connected to various forms of amyloidosis. We detected one mutation, which is responsible for hereditary amyloidosis. Some other single nucleotide variants are so far undescribed or rare variants or represent common polymorphisms in European population. Conclusions We report one positive case of hereditary amyloidosis in a cohort of patients with hypertrophic cardiomyopathy of unknown significance and set up first panel for NGS in hereditary amyloidosis. This work may facilitate successful implementation of the NGS method by other researchers or clinicians and may improve the diagnostic process after validation.
Journal of Clinical Pathology | 2017
Tereza Ševčíková; Kateřina Growková; Zuzana Kufova; Jana Filipova; P Vrublová; Tomas Jelinek; Z Kořístek; Fedor Kryukov; Elena Kryukova; Roman Hájek
Aims Some types of monoclonal gammopathies are typified by a very limited availability of aberrant cells. Modern research use high throughput technologies and an integrated approach for detailed characterisation of abnormal cells. This strategy requires relatively high amounts of starting material which cannot be obtained from every diagnosis without causing inconvenience to the patient. The aim of this methodological paper is to reflect our long experience with laboratory work and describe the best protocols for sample collection, sorting and further preprocessing in terms of the available number of cells and intended downstream application in monoclonal gammopathies research. Potential pitfalls are also discussed. Methods Comparison and optimisation of freezing and sorting protocols for plasma cells in monoclonal gammopathies, followed by testing of various nucleic acid isolation and amplification techniques to establish a guideline for sample processing in haemato-oncology research. Results We show the average numbers of aberrant cells that can be obtained from various monoclonal gammopathies (monoclonal gammopathy of undetermined significance/light chain amyloidosis/multiple myeloma (MM)/MM circulating plasma cells/ minimal residual disease MM—10 123/22 846/305 501/68 641/4000 aberrant plasma cells of 48/30/10/16/37×106 bone marrow mononuclear cells) and the expected yield of nucleic acids provided from multiple isolation kits (DNA/RNA yield from 1 to 200×103 cells was 2.14–427/0.12–123 ng). Conclusions Tested kits for parallel isolation deliver outputs comparable with kits specialised for just one type of molecule. We also present our positive experience with the whole genome amplification method, which can serve as a very powerful tool to gain complex information from a very small cell population.
Hematological Oncology | 2017
Tomas Jelinek; Elena Kryukova; Zuzana Kufova; Fedor Kryukov; Roman Hájek
Proteasome inhibitors are the backbone in the treatment of multiple myeloma with 3 of its representatives (bortezomib, carfilzomib, and ixazomib) having already been approved. There is a different situation altogether in the treatment of amyloid light chain (AL) amyloidosis where owing to the rarity of this entity neither of these drugs has currently gained approval. Amyloid light chain plasma cells are possibly more vulnerable to bortezomib than myeloma plasmocytes because of a slightly distinct mechanism of action, which is described in depth in this manuscript. Bortezomib is highly active and rapidly effective as a single agent and even more potent in combination with dexamethasone and alkylators. Bortezomib‐based regimens have become a standard part of the initial treatment of AL amyloidosis in the majority of centers. We have reviewed all available data on bortezomib in various combinations and settings. Carfilzomib seems to be effective but also toxic in these fragile patients with a high rate of cardiac events. Oral ixazomib has shown a surprisingly high efficacy with manageable toxicity and has received the Food and Drug Administration Breakthrough Therapy designation in 2014 for relapsed AL amyloidosis patients. In this review we have comprehensively described the current available knowledge of these 3 proteasome inhibitors and their use in AL amyloidosis.
Klinicka Onkologie | 2017
Martina Zátopková; Jana Filipova; Tomas Jelinek; Petr Vojta; Tereza Ševčíková; Michal Šimíček; Lucie Říhová; Renata Bezděková; Kateřina Growková; Zuzana Kufova; Jana Smejkalová; Marian Hajduch; Luděk Pour; Jiří Minařík; Alexandra Jungová; Vladimír Maisnar; Fedor Kryukov; Roman Hájek
Multiple myeloma is a plasma cell dyscrasia. It is the second most common hematological malignancy which is characterized by proliferation of clonal plasma cells producing harmful monoclonal immunoglobulin. Despite treatment modalities greatly evolved during the last decade, small amount of aberrant residual cells reside in patients after therapy and can cause relapse of the disease. Characterization of the residual, resistant clones can help to reveal important therapeutic targets for application of effective and precious treatment. We use CD38, CD45, CD56 and CD19 sorted aberrant plasma cells to perform next generation sequencing of their exome. Among the 213 genes in which at least one variant was present, the most interesting was found gene NRAS, one of the most often mutated gene in multiple myeloma, and homologs of 88 gene panel previously used for multiple myeloma sequencing among which was a gene previously identified as gene meaningful in bortezomib resistance. Nevertheless, the results of next generation exome sequencing need to be interpreted with caution, since they rely on bioinformatical analysis, which is still being optimized. The results of next generation sequencing will also have to be confirmed by Sanger sequencing. Final results supported by larger cohort of patients will be published soon.Key words: multiple myeloma - minimal residual disease - exome - next generation sequencing.
Klinicka Onkologie | 2017
Zuzana Kufova; Tereza Ševčíková; Kateřina Growková; Petr Vojta; Jana Filipova; Zdeněk Adam; Luděk Pour; Miroslav Penka; Romana Rysava; Pavel Němec; Lucie Brožová; Petra Vychytilová; Artur Jurczyszyn; Sebastian Grosicki; Agnieszka Barchnicka; Marian Hajduch; Michal Šimíček; Roman Hájek
Immunoglobulin light chain amyloidosis (AL amyloidosis - ALA) is a monoclonal gammopathy characterized by presence of aberrant plasma cells producing amyloidogenic immunoglobulin light chains. This leads to formation of amyloid fibrils in various organs and tissues, mainly in heart and kidney, and causes their dysfunction. As amyloid depositing in target organs is irreversible, there is a big effort to identify biomarker that could help to distinguish ALA from other monoclonal gammopathies in the early stages of disease, when amyloid deposits are not fatal yet. High throughput technologies bring new opportunities to modern cancer research as they enable to study disease within its complexity. Sophisticated methods such as next generation sequencing, gene expression profiling and circulating microRNA profiling are new approaches to study aberrant plasma cells from patients with light chain amyloidosis and related diseases. While generally known mutation in multiple myeloma patients (KRAS, NRAS, MYC, TP53) were not found in ALA, number of mutated genes is comparable. Transcriptome of ALA patients proves to be more similar to monoclonal gammopathy of undetermined significance patients, moreover level of circulating microRNA, that are known to correlate with heart damage, is increased in ALA patients, where heart damage in ALA typical symptom.Key words: amyloidosis - plasma cell - genome - transcriptome - microRNA.
European Journal of Haematology | 2017
Kateřina Growková; Elena Kryukova; Zuzana Kufova; Jana Filipova; Tereza Ševčíková; Lucie Říhová; Michal Kaščák; Fedor Kryukov; Roman Hájek
Waldenström′s macroglobulinemia (WM) is a complex disease characterized by apparent morphological heterogeneity within the malignant clonal cells representing a continuum of small lymphocytes, plasmacytoid lymphocytes, and plasma cells. At the molecular level, the neoplastic B cell–derived clone has undergone somatic hypermutation, but not isotype switching, and retains the capability of plasmacytic differentiation. Although by classical definition, WM is formed by monoclonal expansion, long‐lived clonal B lymphocytes are of heterogeneous origin. Even more, according to current opinion, plasma cells also conform certain population with pathogenic and clinical significance. In this article, we review the recent advances in the WM clonal architecture, briefly describe B‐cell development during which the molecular changes lead to the malignant transformation and mainly focus on differences between two principal B‐lineage clones, including analysis of their genome and transcriptome profiles, as well as immunophenotype features. We assume that the correct identification of a number of specific immunophenotypic molecular and expression alterations leading to proper aberrant clone detection can help to guide patient monitoring throughout treatment and successfully implement therapy strategies directed against both B‐ and plasma cell tumor WM clones.