Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Terrance J. Leighton is active.

Publication


Featured researches published by Terrance J. Leighton.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity.

Andrew J. Westphal; P. Buford Price; Terrance J. Leighton; Katherine E. Wheeler

Using an automated scanning microscope, we report the surprising result that individual dormant spores of Bacillus thuringiensis grow and shrink in response to increasing and decreasing relative humidity. We simultaneously monitored the size of inorganic calibration particles. We found that the spores consistently swell in response to increased relative humidity, and shrink to near their original size on reexposure to dry air. Although the dispersion of swelling amplitudes within an ensemble of spores is wide (≈30% of the average amplitude), amplitudes for individual spores are highly correlated between different swelling episodes, suggesting that individual spores respond consistently to changes in humidity. We find evidence for two distinct time scales for swelling: one with a time scale of no more than ≈50 s, and another with a time scale of ≈8 min. We speculate that these two mechanisms may be due to rapid diffusion of water into the spore coat + cortex, followed by slower diffusion of water into the spore core, respectively. Humidity-dependent swelling may account for the greater kill effectiveness of spores by gas-phase chlorine dioxide, formaldehyde, and ethylene oxide at very high relative humidity.


Proceedings of the National Academy of Sciences of the United States of America | 2007

In vitro high-resolution structural dynamics of single germinating bacterial spores

Marco Plomp; Terrance J. Leighton; Katherine E. Wheeler; Haley D. Hill; Alexander J. Malkin

Although significant progress has been achieved in understanding the genetic and biochemical bases of the spore germination process, the structural basis for breaking the dormant spore state remains poorly understood. We have used atomic force microscopy (AFM) to probe the high-resolution structural dynamics of single Bacillus atrophaeus spores germinating under native conditions. Here, we show that AFM can reveal previously unrecognized germination-induced alterations in spore coat architecture and topology as well as the disassembly of outer spore coat rodlet structures. These results and previous studies in other microorganisms suggest that the spore coat rodlets are structurally similar to amyloid fibrils. AFM analysis of the nascent surface of the emerging germ cell revealed a porous network of peptidoglycan fibers. The results are consistent with a honeycomb model structure for synthetic peptidoglycan oligomers determined by NMR. AFM is a promising experimental tool for investigating the morphogenesis of spore germination and cell wall peptidoglycan structure.


Analytical Chemistry | 2008

Imaging and 3D elemental characterization of intact bacterial spores by high-resolution secondary ion mass spectrometry.

Sutapa Ghosal; Stewart J. Fallon; Terrance J. Leighton; Katherine E. Wheeler; Michael J. Kristo; Ian D. Hutcheon; Peter K. Weber

We present a quantitative, imaging technique based on nanometer-scale secondary ion mass spectrometry for mapping the 3D elemental distribution present in an individual micrometer-sized Bacillus spore. We use depth profile analysis to access the 3D compositional information of an intact spore without the additional sample preparation steps (fixation, embedding, and sectioning) typically used to access substructural information in biological samples. The method is designed to ensure sample integrity for forensic characterization of Bacillus spores. The minimal sample preparation/alteration required in this methodology helps to preserve sample integrity. Furthermore, the technique affords elemental distribution information at the individual spore level with nanometer-scale spatial resolution and high (microg/g) analytical sensitivity. We use the technique to map the 3D elemental distribution present within Bacillus thuringiensis israelensis spores.


Applied and Environmental Microbiology | 2005

Toward a System of Microbial Forensics: from Sample Collection to Interpretation of Evidence

Bruce Budowle; Steven E. Schutzer; Michael Ascher; Ronald M. Atlas; James P. Burans; Ranajit Chakraborty; John J. Dunn; Claire M. Fraser; David R. Franz; Terrance J. Leighton; Stephen A. Morse; Randall S. Murch; Jacques Ravel; D. L. Rock; Thomas R. Slezak; Stephan P. Velsko; Anne Walsh; Ronald A. Walters

The threat of terrorist or criminal use of pathogenic organisms and their toxins remains a great concern in the United States. The anthrax letter attack of 2001 ([12][1]) raised the awareness of our vulnerability. It also demonstrated the need to perform microbial forensic analyses for attribution


Journal of Biological Chemistry | 2006

Paired Bacillus anthracis Dps (Mini-ferritin) Have Different Reactivities with Peroxide

Xiaofeng Liu; Kijeong Kim; Terrance J. Leighton; Elizabeth C. Theil

Dps (DNA protection during starvation) proteins, mini-ferritins in the ferritin superfamily, catalyze Fe2+/H2O2/O2 reactions and make minerals inside protein nanocages to minimize radical oxygen-chemistry (metal/osmotic/temperature/nutrient/oxidant) and sometimes to confer virulence. Paired Dps proteins in Bacillus, rare in other bacteria, have 60% sequence identity. To explore functional differences in paired Bacilli Dps protein, we measured ferroxidase activity and DNA protection (hydroxyl radical) for Dps protein dodecamers from Bacillus anthracis (Ba) since crystal structures and iron mineralization (iron-stain) were known. The self-assembled (200 kDa) Ba Dps1 (Dlp-1) and Ba Dps2 (Dlp-2) proteins had similar Fe2+/O2 kinetics, with space for minerals of 500 iron atoms/protein, and protected DNA. The reactions with Fe2+ were novel in several ways: 1) Ba Dps2 reactions (Fe2+/H2O2) proceeded via an A650 nm intermediate, with similar rates to maxi-ferritins (Fe2+/O2), indicating a new Dps protein reaction pathway, 2) Ba Dps2 reactions (Fe2+/O2 versus Fe2+/O2 + H2O2) differed 3-fold contrasting with Escherichia coli Dps reactions, with 100-fold differences, and 3) Ba Dps1, inert in Fe2+/H2O2 catalysis, inhibited protein-independent Fe2+/H2O2 reactions. Sequence similarities between Ba Dps1 and Bacillus subtilis DpsA (Dps1), which is regulated by general stress factor (SigmaB) and Fur, and between Ba Dps2 and B. subtilis MrgA, which is regulated by H2O2 (PerR), suggest the function of Ba Dps1 is iron sequestration and the function of Ba Dps2 is H2O2 destruction, important in host/pathogen interactions. Destruction of H2O2 by Ba Dps2 proceeds via an unknown mechanism with an intermediate similar spectrally (A650 nm) and kinetically to the maxi-ferritin diferric peroxo complex.


Fems Immunology and Medical Microbiology | 2004

Induction of opsonic antibodies to the γ-D-glutamic acid capsule of Bacillus anthracis by immunization with a synthetic peptide-carrier protein conjugate

Taia T Wang; Patricia F. Fellows; Terrance J. Leighton; Alexander H. Lucas

The capsule of Bacillus anthracis, a polymer of gamma-D-glutamic acid, functions as a virulence determinant and is a poor immunogen. In this study we show that antibodies reactive with the B. anthracis capsule can be elicited in mice by immunization with a conjugate consisting of a synthetic gamma-D-glutamic acid nonamer peptide (gamma-D-glu9) covalently coupled to keyhole limpet hemocyanin. The serum response to gamma-D-glu9 was comprised primarily of IgG antibodies that recognized an epitope requiring a minimum of four gamma-linked D-glutamic acid residues. Antibodies to (gamma-D-glu9) bound to the surface of encapsulated B. anthracis cells and mediated opsonophagoctosis. These findings suggest that anti-capsular antibodies could mediate the clearance of vegetative B. anthracis cells in vivo. Thus, inclusion of an immunogenic capsular component as well as protective antigen in new anthrax vaccines would generate immune responses targeting both the bacteremic and toxigenic aspects of anthrax infection and thus may increase protective efficacy.


Critical Reviews in Microbiology | 2005

Genetic Analysis and Attribution of Microbial Forensics Evidence

Bruce Budowle; Martin D. Johnson; Claire M. Fraser; Terrance J. Leighton; Randall S. Murch; Ranajit Chakraborty

Because of the availability of pathogenic microorganisms and the relatively low cost of preparing and disseminating bioweapons, there is a continuing threat of biocrime and bioterrorism. Thus, enhanced capabilities are needed that enable the full and robust forensic exploitation and interpretation of microbial evidence from acts of bioterrorism or biocrimes. To respond to the need, greater resources and efforts are being applied to the burgeoning field of microbial forensics. Microbial forensics focuses on the characterization, analysis and interpretation of evidence for attributional purposes from a bioterrorism act, biocrime, hoax or inadvertent agent release. To enhance attribution capabilities, a major component of microbial forensics is the analysis of nucleic acids to associate or eliminate putative samples. The degree that attribution can be addressed depends on the context of the case, the available knowledge of the genetics, phylogeny, and ecology of the target microorganism, and technologies applied. The types of genetic markers and features that can impact statistical inferences of microbial forensic evidence include: single nucleotide polymorphisms, repetitive sequences, insertions and deletions, mobile elements, pathogenicity islands, virulence and resistance genes, house keeping genes, structural genes, whole genome sequences, asexual and sexual reproduction, horizontal gene transfer, conjugation, transduction, lysogeny, gene conversion, recombination, gene duplication, rearrangements, and mutational hotspots. Nucleic acid based typing technologies include: PCR, real-time PCR, MLST, MLVA, whole genome sequencing, and microarrays.


Applied and Environmental Microbiology | 2010

Spatially Resolved Characterization of Water and Ion Incorporation in Bacillus Spores

Sutapa Ghosal; Terrance J. Leighton; Katherine E. Wheeler; Ian D. Hutcheon; Peter K. Weber

ABSTRACT We present the first direct visualization and quantification of water and ion uptake into the core of individual dormant Bacillus thuringiensis subsp. israelensis (B. thuringiensis subsp. israelensis) endospores. Isotopic and elemental gradients in the B. thuringiensis subsp. israelensis spores show the permeation and incorporation of deuterium in deuterated water (D2O) and solvated ions throughout individual spores, including the spore core. Under hydrated conditions, incorporation into a spore occurs on a time scale of minutes, with subsequent uptake of the permeating species continuing over a period of days. The distribution of available adsorption sites is shown to vary with the permeating species. Adsorption sites for Li+, Cs+, and Cl− are more abundant within the spore outer structures (exosporium, coat, and cortex) relative to the core, while F− adsorption sites are more abundant in the core. The results presented here demonstrate that elemental abundance and distribution in dormant spores are influenced by the ambient environment. As such, this study highlights the importance of understanding how microbial elemental and isotopic signatures can be altered postproduction, including during sample preparation for analysis, and therefore, this study is immediately relevant to the use of elemental and isotopic markers in environmental microbiology and microbial forensics.


Frontiers in Microbiology | 2015

Fighting Ebola with novel spore decontamination technologies for the military

Christopher J. Doona; Florence E. Feeherry; Kenneth Kustin; Gene G. Olinger; Peter Setlow; Alexander J. Malkin; Terrance J. Leighton

Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). The basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercialized as a dry mixed-chemical for bacterial spore decontamination. In fact, the NSRDEC research scientists developed an ensemble of ClO2 technologies designed for different applications in decontaminating fresh produce; food contact and handling surfaces; personal protective equipment; textiles used in clothing, uniforms, tents, and shelters; graywater recycling; airplanes; surgical instruments; and hard surfaces in latrines, laundries, and deployable medical facilities. These examples demonstrate the far-reaching impact, adaptability, and versatility of these innovative technologies. We present herein the unique attributes of NSRDEC’s novel decontamination technologies and a Case Study of the development of FDKs that were deployed in West Africa by international public health organizations to sterilize Ebola-contaminated medical equipment. FDKs use bacterial spores as indicators of sterility. We review the properties and structures of spores and the mechanisms of bacterial spore inactivation by ClO2. We also review mechanisms of bacterial spore inactivation by novel, emerging, and established non-thermal technologies for food preservation, such as high pressure processing, irradiation, cold plasma, and chemical sanitizers, using an array of Bacillus subtilis mutants to probe mechanisms of spore germination and inactivation. We employ techniques of high-resolution atomic force microscopy and phase contrast microscopy to examine the effects of γ-irradiation on bacterial spores of Bacillus anthracis, Bacillus thuringiensis, and Bacillus atrophaeus spp. and of ClO2 on B. subtilis spores, and present in detail assays using spore bio-indicators to ensure sterility when decontaminating with ClO2.


Microscopy and Microanalysis | 2005

Unraveling the architecture and structural dynamics of pathogens by high-resolution in vitro atomic force microscopy

Alexander J. Malkin; Marco Plomp; Terrance J. Leighton; Alexander McPherson; Katherine E. Wheeler

Author(s): Malkin, AJ; Plomp, M; Leighton, TJ; McPherson, A; Wheeler, KE | Abstract: Progress in structural biology very much depends upon the development of new high-resolution techniques and tools. Despite decades of study of viruses, bacteria and bacterial spores and their pressing importance in human medicine and biodefense, many of their structural properties are poorly understood. Thus, characterization and understanding of the architecture of protein surface and internal structures of pathogens is critical to elucidating mechanisms of disease, immune response, physicochemical properties, environmental resistance and development of countermeasures against bioterrorist agents. Furthermore, even though complete genome sequences are available for various pathogens, the structure-function relationships are not understood. Because of their lack of symmetry and heterogeneity, large human pathogens are often refractory to X-ray crystallographic analysis or reconstruction by cryo-electron microscopy (cryo-EM). An alternative high-resolution method to examine native structure of pathogens is atomic force microscopy (AFM), which allows direct visualization of macromolecular assemblies at near-molecular resolution. The capability to image single pathogen surfaces at nanometer scale in vitro would profoundly impact mechanistic and structural studies of Progress in structural biology very much depends upon the development of new high-resolution techniques and tools. Despite decades of study of viruses, bacteria and bacterial spores and their pressing importance in human medicine and biodefense, many of their structural properties are poorly understood. Thus, characterization and understanding of the architecture of protein surface and internal structures of pathogens is critical to elucidating mechanisms of disease, immune response, physicochemical properties, environmental resistance and development of countermeasures against bioterrorist agents. Furthermore, even though complete genome sequences are available for various pathogens, the structure-function relationships are not understood. Because of their lack of symmetry and heterogeneity, large human pathogens are often refractory to X-ray crystallographic analysis or reconstruction by cryo-electron microscopy (cryo-EM). An alternative high-resolution method to examine native structure of pathogens is atomic force microscopy (AFM), which allows direct visualization of macromolecular assemblies at near-molecular resolution. The capability to image single pathogen surfaces at nanometer scale in vitro would profoundly impact mechanistic and structural studies of pathogenesis, immunobiology, specific cellular processes, environmental dynamics and biotransformation. Copyright 2005, LASPM.

Collaboration


Dive into the Terrance J. Leighton's collaboration.

Top Co-Authors

Avatar

Katherine E. Wheeler

Children's Hospital Oakland Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Plomp

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce Budowle

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ranajit Chakraborty

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chul-Min Park

Children's Hospital Oakland Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge