Terrence Tougas
Boehringer Ingelheim
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Terrence Tougas.
Journal of Aerosol Medicine-deposition Clearance and Effects in The Lung | 2003
Dave Christopher; Paul Curry; Bill Doub; Kenneth Furnkranz; Martin Lavery; Karl K. Lin; Svetlana Lyapustina; Jolyon P. Mitchell; Brian Rogers; Helen Strickland; Terrence Tougas; Yi Tsong; Bruce Wyka
APSD MEASUREMENTS OF OINDP are performed in order to characterize the size distribution of particles emitted from the OINDP device. APSD measurements are performed during drug product development for characterization studies, clinical release, and stability studies. In addition, some type of APSD measurement is usually required for release of the final commercial product as part of a comprehensive program to ensure quality of marketed batches. These measurements are made using a CI/MSLI that fractionates the incoming aerosol into several classes with well-defined limits in terms of aerodynamic particle size. It is normal to collect data from a CI/MSLI measurement initially as mass of API collected on each of the components of the apparatus (e.g., induction port, pre-separator (if used), stages of the CI/MSLI, and back-up filter). After determining the mass of API on each component of the apparatus (normally via HPLC with spectrophotometric detection or via direct spectrophotometric analysis), the arithmetic sum of the obtained individual values is calculated, expressed as % of target delivery per actuation, and is referred to as the mass balance (MB). MB is useful in determining whether an expected mass of drug has been captured by the impactor to provide a reliable measurement of the APSD, but by itself does not ensure that the APSD results are valid. MB should therefore not be used alone as a system suitability test when assessing APSD. The PQRI Particle Size Distribution Mass Balance Working Group was formed in late 2001 to examine several issues concerning the MB specification recommendations in the following FDA Guidances for Industry:
Aaps Pharmscitech | 2008
Matthew Bonam; David Christopher; David Cipolla; Brent A. Donovan; David Goodwin; Susan Holmes; Svetlana Lyapustina; Jolyon P. Mitchell; Steve Nichols; Gunilla Pettersson; Chris Quale; Nagaraja Rao; Dilraj Singh; Terrence Tougas; Mike Van Oort; Bernd Walther; Bruce Wyka
The purpose of this article is to catalogue in a systematic way the available information about factors that may influence the outcome and variability of cascade impactor (CI) measurements of pharmaceutical aerosols for inhalation, such as those obtained from metered dose inhalers (MDIs), dry powder inhalers (DPIs) or products for nebulization; and to suggest ways to minimize the influence of such factors. To accomplish this task, the authors constructed a cause-and-effect Ishikawa diagram for a CI measurement and considered the influence of each root cause based on industry experience and thorough literature review. The results illustrate the intricate network of underlying causes of CI variability, with the potential for several multi-way statistical interactions. It was also found that significantly more quantitative information exists about impactor-related causes than about operator-derived influences, the contribution of drug assay methodology and product-related causes, suggesting a need for further research in those areas. The understanding and awareness of all these factors should aid in the development of optimized CI methods and appropriate quality control measures for aerodynamic particle size distribution (APSD) of pharmaceutical aerosols, in line with the current regulatory initiatives involving quality-by-design (QbD).
Aaps Pharmscitech | 2012
Trevor Riley; David Christopher; Jan Arp; Andrea Casazza; Agnes Colombani; Andrew Cooper; Monisha Dey; Janet Maas; Jolyon P. Mitchell; Maria Reiners; Nastaran Sigari; Terrence Tougas; Svetlana Lyapustina
The purpose of this article is to review the suitability of the analytical and statistical techniques that have thus far been developed to assess the dissolution behavior of particles in the respirable aerodynamic size range, as generated by orally inhaled products (OIPs) such as metered-dose inhalers and dry powder inhalers. The review encompasses all analytical techniques publicized to date, namely, those using paddle-over-disk USP 2 dissolution apparatus, flow-through cell dissolution apparatus, and diffusion cell apparatus. The available techniques may have research value for both industry and academia, especially when developing modified-release formulations. The choice of a method should be guided by the question(s) that the research strives to answer, as well as by the strengths and weaknesses of the available techniques. There is still insufficient knowledge, however, for translating the dissolution data into statements about quality, performance, safety, or efficacy of OIPs in general. Any attempts to standardize a dissolution method for compendial inclusion or compendial use would therefore be premature. This review reinforces and expands on the 2008 stimulus article of the USP Inhalation Ad Hoc Advisory Panel, which “could not find compelling evidence suggesting that such dissolution testing is kinetically and/or clinically crucial for currently approved inhalation drug products.”
Aaps Pharmscitech | 2010
Jolyon P. Mitchell; Mark Nagel; Cathy Doyle; Rubina Ali; Valentina Avvakoumova; J. David Christopher; Jorge Quiroz; Helen Strickland; Terrence Tougas; Svetlana Lyapustina
The purpose of this study was to compare relative precision of two different abbreviated impactor measurement (AIM) systems and a traditional multi-stage cascade impactor (CI). The experimental design was chosen to provide separate estimates of variability for each impactor type. Full-resolution CIs are useful for characterizing the aerosol aerodynamic particle size distribution of orally inhaled products during development but are too cumbersome, time-consuming, and resource-intensive for other applications, such as routine quality control (QC). This article presents a proof-of-concept experiment, where two AIM systems configured to provide metrics pertinent to QC (QC-system) and human respiratory tract (HRT-system) were evaluated using a hydrofluoroalkane-albuterol pressurized metered dose inhaler. The Andersen eight-stage CI (ACI) served as the benchmark apparatus. The statistical design allowed estimation of precision with each CI configuration. Apart from one source of systematic error affecting extra-fine particle fraction from the HRT-system, no other bias was detected with either abbreviated system. The observed bias was shown to be caused by particle bounce following the displacement of surfactant by the shear force of the airflow diverging above the collection plate of the second impaction stage. A procedure was subsequently developed that eliminated this source of error, as described in the second article of this series (submitted to AAPS PharmSciTech). Measurements obtained with both abbreviated impactors were very similar in precision to the ACI for all measures of in vitro performance evaluated. Such abbreviated impactors can therefore be substituted for the ACI in certain situations, such as inhaler QC or add-on device testing.
Aaps Pharmscitech | 2007
David Christopher; Wallace P. Adams; Anthony Amann; Craig M. Bertha; Peter R. Byron; William H. Doub; Craig A. Dunbar; Walter W. Hauck; Svetlana Lyapustina; Jolyon P. Mitchell; Beth Morgan; Steve Nichols; Ziqing Pan; Gur Jai Pal Singh; Terrence Tougas; Yi Tsong; Ron Wolff; Bruce Wyka
The purpose of this article is to report final results of the evaluation of a chi-square ratio test proposed by the US Food and Drug Administration (FDA) for demonstrating equivalence of aerodynamic particle size distribution (APSD) profiles of nasal and orally inhaled drug products. A working group of the Product Quality Research Institute previously published results demonstrating some limitations of the proposed test. In an effort to overcome the test’s limited discrimination, the group proposed a supplemental test, a population bioequivalence (PBE) test for impactor-sized mass (ISM). In this final report the group compares the chi-square ratio test to the ISM-PBE test and to the combination of both tests. The basis for comparison is a set of 55 realistic scenarios of cascade impactor data, which were evaluated for equivalence by the statistical tests and independently by the group members. In many instances, the combined application of these 2 tests appeared to increase the discriminating ability of the statistical procedure compared with the chi-square ratio test alone. In certain situations the chi-square ratio test alone was sufficient to determine equivalence of APSD profiles, while in other situations neither of the tests alone nor their combination was adequate. This report describes all of these scenarios and results. In the end, the group did not recommend a statistical test for APSD profile equivalence. The group did not investigate other in vitro tests, in vivo issues, or other statistical tests for APSD profile comparisons. The studied tests are not intended for routine quality control of APSD.
Aaps Pharmscitech | 2009
Terrence Tougas; David Christopher; Jolyon P. Mitchell; Helen Strickland; Bruce Wyka; Mike Van Oort; Svetlana Lyapustina
This study of aerodynamic mass-weighted particle size distribution (APSD) data from orally inhaled products (OIPs) investigated whether a set of simpler (than currently used) metrics may be adequate to detect changes in APSD for quality control (QC) purposes. A range of OIPs was examined, and correlations between mass median aerodynamic diameter and the ratio of large particle mass (LPM) to small particle mass (SPM) were calculated. For an Andersen cascade impactor, the LPM combines the mass associated with particle sizes from impactor stage 1 to a product-specific boundary size; SPM combines the mass of particles from that boundary through to terminal filter. The LPM–SPM boundary should be chosen during development based on the full-resolution impactor results so as to maximize the sensitivity of the LPM/SPM ratio to meaningful changes in quality. The LPM/SPM ratio along with the impactor-sized mass (ISM) are by themselves sufficient to detect changes in central tendency and area under the APSD curve, which are key in vitro quality attributes for OIPs. Compared to stage groupings, this two-metric approach provides better intrinsic precision, in part due to having adequate mass and consequently better ability to detect changes in APSD and ISM, suggesting that this approach should be a preferred QC tool. Another advantage is the possibility to obtain these metrics from the abbreviated impactor measurements (AIM) rather than from full-resolution multistage impactors. Although the boundary is product specific, the testing could be accomplished with a basic AIM system which can meet the needs of most or all OIPs.
Aaps Pharmscitech | 2011
Jolyon P. Mitchell; Richard Bauer; Svetlana Lyapustina; Terrence Tougas; Volker Glaab
The purpose of this article is to review non-impactor-based methods for measuring particle size distributions of orally inhaled and nasal pharmaceutical aerosols. The assessment of the size distributions of sprays and aerosols from orally inhaled and nasal drug products by methods not involving multi-stage cascade impaction may offer significant potential advantages in terms of labor savings and reducing the risk for operator-related errors associated with complex-to-undertake impactor-based methods. Indeed, in the case of nasal spray products, cascade impaction is inappropriate and alternative, and preferably non-invasive methods must be sought that minimize size-related bias associated with the measurement process for these relatively large droplets. This review highlights the options that are available to those involved with product quality assessments, providing guidance on relative strengths and weaknesses, as well as highlighting precautions that should be observed to minimize bias. The advent of Raman chemical imaging, which enables an estimate to be made of the proportion of each particle comprising active pharmaceutical ingredient(s) (APIs), necessitates a re-think about the value of classical microscopy image analysis as now being capable of providing API-relevant information from collected aerosols and sprays.
Aaps Pharmscitech | 2010
Jolyon P. Mitchell; Mark Nagel; Cathy Doyle; Rubina Ali; Valentina Avvakoumova; J. David Christopher; Jorge Quiroz; Helen Strickland; Terrence Tougas; Svetlana Lyapustina
The purpose of this study was to resolve an anomalously high measure of extra-fine particle fraction (EPF) determined by the abbreviated cascade impactor possibly relevant for human respiratory tract (AIM-HRT) in the experiment described in Part 1 of this two-part series, in which the relative precision of abbreviated impactors was evaluated in comparison with a full resolution Andersen eight-stage cascade impactor (ACI). Evidence that the surface coating used to mitigate particle bounce was laterally displaced by the flow emerging from the jets of the lower stage was apparent upon microscopic examination of the associated collection plate of the AIM-HRT impactor whose cut point size defines EPF. A filter soaked in surfactant was floated on top of this collection plate, and further measurements were made using the same pressurized metered-dose inhaler-based formulation and following the same procedure as in Part 1. Measures of EPF, fine particle, and coarse particle fractions were comparable with those obtained with the ACI, indicating that the cause of the bias had been identified and removed. When working with abbreviated impactors, this precaution is advised whenever there is evidence that surface coating displacement has occurred, a task that can be readily accomplished by microscopic inspection of all collection plates after allowing the impactor to sample ambient air for a few minutes.
Aaps Pharmscitech | 2012
Robert Capen; David Christopher; Patrick Forenzo; Charles Ireland; Oscar Liu; Svetlana Lyapustina; John O’Neill; Nate Patterson; Michelle Quinlan; Dennis Sandell; James Schwenke; Walter W. Stroup; Terrence Tougas
This article proposes new terminology that distinguishes between different concepts involved in the discussion of the shelf life of pharmaceutical products. Such comprehensive and common language is currently lacking from various guidelines, which confuses implementation and impedes comparisons of different methodologies. The five new terms that are necessary for a coherent discussion of shelf life are: true shelf life, estimated shelf life, supported shelf life, maximum shelf life, and labeled shelf life. These concepts are already in use, but not named as such. The article discusses various levels of “product” on which different stakeholders tend to focus (e.g., a single-dosage unit, a batch, a production process, etc.). The article also highlights a key missing element in the discussion of shelf life—a Quality Statement, which defines the quality standard for all key stakeholders. Arguments are presented that for regulatory and statistical reasons the true product shelf life should be defined in terms of a suitably small quantile (e.g., fifth) of the distribution of batch shelf lives. The choice of quantile translates to an upper bound on the probability that a randomly selected batch will be nonconforming when tested at the storage time defined by the labeled shelf life. For this strategy, a random-batch model is required. This approach, unlike a fixed-batch model, allows estimation of both within- and between-batch variability, and allows inferences to be made about the entire production process. This work was conducted by the Stability Shelf Life Working Group of the Product Quality Research Institute.
Aaps Pharmscitech | 2011
Terrence Tougas; Dave Christopher; Jolyon P. Mitchell; Svetlana Lyapustina; Michiel Van Oort; Richard Bauer; Volker Glaab
Over the lifecycle of an orally inhaled product (OIP), multi-stage cascade impactor (CI) measurements are used for different purposes and to address different questions. Full-resolution CIs can provide important information during product development and are widely used but are time- and resource-intensive, highly variable, and suboptimal for OIP quality control (QC) testing. By contrast, Efficient Data Analysis (EDA) combined with Abbreviated Impactor Measurement (AIM) systems pertinent either for QC and—possibly—for adult Human Respiratory Tract (pHRT) has been introduced for OIP performance assessment during and post-development. This article summarizes available evidence and discusses a strategy for using either abbreviated or full-resolution CI systems depending on the purpose of the measurement, such that adequate, accurate, and efficient testing of aerodynamic particle size distribution (APSD) of OIPs can be achieved throughout the lifecycle of a product. Under these proposals, a comprehensive testing program should initially be conducted by full-resolution CI in OIP development to ascertain the product’s APSD. Subsequently, correlations should be established from the selected AIM CIs to the corresponding full-resolution system, ideally developing specifications common to both techniques. In the commercial phase, it should be possible to release product using AIM/EDA, keeping the full-resolution CI for investigations, change control, and trouble-shooting, thus optimizing resources for APSD characterization throughout the product lifecycle. If an in vitro–in vivo relationship is established and clinically relevant sizes are known, an AIM–pHRT could serve as a quick indicator that clinically relevant fractions have not changed and also, in the management of post-approval changes.