Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Terri J. Allen is active.

Publication


Featured researches published by Terri J. Allen.


Nephrology | 2007

Rodent models of streptozotocin‐induced diabetic nephropathy (Methods in Renal Research)

Greg H. Tesch; Terri J. Allen

SUMMARY:  Streptozotocin‐induced pancreatic injury is commonly used for creating rodent models of type 1 diabetes which develop renal injury with similarities to human diabetic nephropathy. This model can be established in genetically modified rodents for investigating the role of molecular mechanisms and genetic susceptibility in the development of diabetic nephropathy. In this report, the authors describe and compare the current protocols being used to establish models of diabetic nephropathy in rat and mouse strains using streptozotocin. The authors also list some of the histological criteria and biochemical measurements which are being used to validate these models. In addition, our review explains some of the key aspects involved in these models, including the impact of streptozotocin‐dosage, uninephrectomy, hypertension and genetically modified strains, which can each affect the development of disease and the interpretation of findings.


Circulation | 2002

Prevention of Accelerated Atherosclerosis by Angiotensin-Converting Enzyme Inhibition in Diabetic Apolipoprotein E–Deficient Mice

Riccardo Candido; Karin Jandeleit-Dahm; Zemin Cao; Stefan P. Nesteroff; Wendy C. Burns; Stephen M. Twigg; Rodney J. Dilley; Mark E. Cooper; Terri J. Allen

Background—Atherosclerosis is a major complication of diabetes, but the mechanisms by which diabetes promotes macrovascular disease have not been fully delineated. Although several animal studies have demonstrated that inhibition of ACE results in a decrease in the development of atherosclerotic lesions, information about the potential benefits of these agents on complex and advanced atherosclerotic lesions as observed in long-term diabetes is lacking. The aim of this study was to evaluate whether treatment with the ACE inhibitor perindopril affects diabetes-induced plaque formation in the apolipoprotein E (apoE)-deficient mouse. Methods and Results—Diabetes was induced by injection of streptozotocin in 6-week-old apoE-deficient mice. Diabetic animals received treatment with perindopril (4 mg · kg−1 · d−1) or no treatment for 20 weeks. Nondiabetic apoE-deficient mice were used as controls. Induction of diabetes was associated with a 4-fold increase in plaque area compared with nondiabetic animals. This accelerated atherosclerosis was associated with a significant increase in aortic ACE expression and activity and connective tissue growth factor and vascular cell adhesion molecule-1 expression. Perindopril treatment inhibited the development of atherosclerotic lesions and diabetes-induced ACE, connective tissue growth factor, and vascular cell adhesion molecule-1 overexpression in the aorta. Conclusions—The activation of the local renin-angiotensin system in the diabetic aorta and the reduction in atherosclerosis with ACE inhibitor treatment provides further evidence that the renin-angiotensin system plays a pivotal role in the development and acceleration of atherosclerosis in diabetes.


Diabetologia | 2001

Irbesartan normalises the deficiency in glomerular nephrin expression in a model of diabetes and hypertension.

Fabrice Bonnet; Mark E. Cooper; Hiroshi Kawachi; Terri J. Allen; G. Boner; Zemin Cao

Aims/hypothesis. The location of nephrin has been identified as the slit-diaphragm of the glomerular podocyte. Recent evidence suggests that nephrin could play a key role in the function of the glomerular filtration barrier and the development of proteinuria but its status in long-term diabetes is still not understood. We studied the expression of nephrin in a hypertensive model of diabetic nephropathy and investigated the potential influence of angiotensin II blockade on nephrin gene and protein expression. Methods. Streptozotocin-diabetic spontaneously hypertensive rats were given either no treatment or the angiotensin II antagonist, irbesartan, at a dose of 15 mg/kg per day by gavage for 32 weeks. Non-diabetic spontaneously hypertensive rats were used as a control group. Real time RT-PCR and immunohistochemistry were used to assess and quantify gene and protein expression of nephrin. Results. Diabetic spontaneously hypertensive rats developed albuminuria and had a reduction in both gene and protein expression of nephrin when compared with control rats. Irbesartan treatment prevented the development of albuminuria and completely abrogated the down regulation of nephrin in diabetic rats. Conclusion/interpretation. Long-term diabetes in spontaneously hypertensive rats is associated with a reduction in both gene and protein expression of nephrin within the kidney. These changes in nephrin levels were completely prevented by angiotensin II antagonist treatment, suggesting a potential novel mechanism to explain the antiproteinuric effect of agents which interrupt the renin-angiotensin system. [Diabetologia (2001) 44: 874–877]


Circulation | 2007

Lack of the Antioxidant Enzyme Glutathione Peroxidase-1 Accelerates Atherosclerosis in Diabetic Apolipoprotein E–Deficient Mice

Paul Lewis; Nada Stefanovic; Josefa Pete; Anna C. Calkin; Sara Giunti; Vicki Thallas-Bonke; Karin Jandeleit-Dahm; Terri J. Allen; Ismail Kola; Mark E. Cooper; Judy B. de Haan

Background— Recent clinical studies have suggested a major protective role for the antioxidant enzyme glutathione peroxidase-1 (GPx1) in diabetes-associated atherosclerosis. We induced diabetes in mice deficient for both GPx1 and apolipoprotein E (ApoE) to determine whether this is merely an association or whether GPx1 has a direct effect on diabetes-associated atherosclerosis. Methods and Results— ApoE-deficient (ApoE−/−) and ApoE/GPx1 double-knockout (ApoE−/−GPx1−/−) mice were made diabetic with streptozotocin and aortic lesion formation, and atherogenic pathways were assessed after 10 and 20 weeks of diabetes. Aortic proinflammatory and profibrotic markers were determined by both quantitative reverse-transcription polymerase chain reaction analysis after 10 weeks of diabetes and immunohistochemical analysis after 10 and 20 weeks of diabetes. Sham-injected nondiabetic counterparts served as controls. Atherosclerotic lesions within the aortic sinus region, as well as arch, thoracic, and abdominal lesions, were significantly increased in diabetic ApoE−/−GPx1−/− aortas compared with diabetic ApoE−/− aortas. This increase was accompanied by increased macrophages, &agr;-smooth muscle actin, receptors for advanced glycation end products, and various proinflammatory (vascular cell adhesion molecule-1) and profibrotic (vascular endothelial growth factor and connective tissue growth factor) markers. Quantitative reverse-transcription polymerase chain reaction analysis showed increased expression of receptors for advanced glycation end products (RAGE), vascular cell adhesion molecule-1, vascular endothelial growth factor, and connective tissue growth factor. Nitrotyrosine levels were significantly increased in diabetic ApoE−/−GPx1−/− mouse aortas. These findings were observed despite upregulation of other antioxidants. Conclusions— Lack of functional GPx1 accelerates diabetes-associated atherosclerosis via upregulation of proinflammatory and profibrotic pathways in ApoE−/− mice. Our study provides evidence of a protective role for GPx1 and establishes GPx1 as an important antiatherogenic therapeutic target in patients with or at risk of diabetic macrovascular disease.


Circulation | 2004

Irbesartan but Not Amlodipine Suppresses Diabetes-Associated Atherosclerosis

Riccardo Candido; Terri J. Allen; Markus Lassila; Zemin Cao; Vicki Thallas; Mark E. Cooper; Karin Jandeleit-Dahm

Background—It remains controversial whether specific blockade of the renin-angiotensin system confers superior antiatherosclerotic effects over other antihypertensive agents in diabetes. Therefore, the aim of this study was to compare equihypotensive doses of the angiotensin II subtype 1 (AT1) receptor blocker irbesartan with the calcium antagonist amlodipine on diabetes-induced plaque formation in the apolipoprotein E (apoE)–null mouse and to explore molecular and cellular mechanisms linked to vascular protection. Methods and Results—Diabetes was induced by injection of streptozotocin in 6-week-old apoE-null mice. Diabetic animals were randomized to no treatment, irbesartan, or amlodipine for 20 weeks. Diabetes was associated with an increase in plaque area and complexity in the aorta in association with a significant increase in aortic AT1 receptor expression, cellular proliferation, collagen content, macrophage- and &agr;-smooth muscle actin–positive cell infiltration, as well as an increased expression of platelet-derived growth factor-B (PDGF-B), monocyte chemoattractant protein-1 (MCP-1), and vascular cell adhesion molecule-1 (VCAM-1). Irbesartan but not amlodipine treatment attenuated the development of atherosclerosis, collagen content, cellular proliferation, and macrophage infiltration as well as diabetes-induced AT1 receptor, PDGF-B, MCP-1, and VCAM-1 overexpression in the aorta despite similar blood pressure reductions by both treatments. Conclusions—Diabetes-associated atherosclerosis is ameliorated by AT1 receptor blockade but not by calcium channel antagonism, providing further evidence for the vascular renin-angiotensin system playing a pivotal role in the development and acceleration of atherosclerosis in diabetes.


Diabetologia | 2001

Podocyte foot process broadening in experimental diabetic nephropathy: amelioration with renin-angiotensin blockade

Sally Mifsud; Terri J. Allen; John F. Bertram; U L Hulthen; Darren J. Kelly; Mark E. Cooper; Jennifer L. Wilkinson-Berka; Richard E. Gilbert

Aims/hypothesis. Changes in podocyte number and morphology have been implicated in the pathogenesis of proteinuria and the progression of human and experimental kidney disease. This study sought to examine podocyte foot process and slit pore architecture in experimental diabetic nephropathy and to determine whether such changes were modified with renoprotective intervention by blockade of the renin-angiotensin system. Methods. The number of filtration slits per 100 μm of glomerular basement membrane was assessed by transmission electron microscopy and quantitated histomorphometrically in control animals and in rats with 24 weeks of streptozotocin-induced diabetes. Diabetic rats were either untreated or received the angiotensin converting enzyme inhibitor ramipril, or the angiotensin II type 1 receptor antagonist, valsartan. Results. When compared with control animals, diabetes was associated with a decrease in the number of slit pores per unit length of glomerular basement membrane, indicative of podocyte foot process broadening. Both ramipril and valsartan attenuated these ultrastructural changes to a similar degree. These differences remained after correcting for glomerular volume as a possible confounding variable. Conclusion/interpretation. Preservation of podocyte architecture could contribute to the renoprotective effects of renin-angiotensin system blockade in diabetic nephropathy. [Diabetologia (2001) 44: 878–882]


Diabetes | 1994

Role of Endothelium-Derived Nitric Oxide in the Pathogenesis of the Renal Hemodynamic Changes of Experimental Diabetes

Radko Komers; Terri J. Allen; Mark E. Cooper

To evaluate the role of nitric oxide (NO) in diabetic hyperfiltration, renal hemodynamic changes and changes in urinary excretion of NO2/NO3 in response to the NO inhibitor nitro-L-arginine methyl ester (L-NAME) and the NO-donating agent glyceryl trinitrate (GTN) were investigated in conscious streptozocin-induced diabetic (D) and age-matched control (C) rats. In all experiments, D rats demonstrated increased glomerular filtration rate (GFR), renal plasma flow (RPF), polyuria, and an increased urinary sodium excretion when compared with C rats. An intravenous bolus of low-dose L-NAME (1 mg/kg body wt) increased modestly systolic blood pressure (sBP) in C rats but had no effect on sBP in D rats. L-NAME induced a marked decrease in GFR and RPF in D rats with no change in filtration fraction (FF). In C rats, no change in GFR was observed, and RPF decreased, resulting in a rise in FF. A supramaximal dose of L-NAME (10 mg/kg body wt) increased sBP in C and D rats to a similar degree. With high-dose L-NAME, GFR decreased in D but not in C rats. There was a greater decrease in RPF in D rats when compared with C animals. An intravenous infusion of GTN induced a modest decrease in sBP in both C and D rats (P < 0.01). There were no changes in GFR and RPF in D rats, but in the C group, GTN increased RPF (P < 0.05) with a tendency for a rise in GFR (P = 0.09). Basal urinary NO2/NO3 excretion was increased in D rats in all experiments. A decrease in urinary NO2/NO3 levels was observed after low-dose L-NAME in D rats, with a similar trend after high-dose L-NAME. NO such changes were observed in C rats. GTN infusion had no effect on urinary NO2/NO3 excretion in D rats but increased urinary NO2/NO3 levels in C rats to levels that were not statistically different from those in D rats. These studies suggest that increased renal production and/or sensitivity to endothelium-derived relaxing factor/NO may play a role in the genesis of diabetic hyperfiltration.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2005

Rosiglitazone Attenuates Atherosclerosis in a Model of Insulin Insufficiency Independent of Its Metabolic Effects

Anna C. Calkin; Josephine M. Forbes; Craig M. Smith; Markus Lassila; Mark E. Cooper; Karin Jandeleit-Dahm; Terri J. Allen

Objectives—Recent studies have demonstrated a role for thiazolidinediones in attenuating atherosclerosis. However, these studies were performed in insulin-resistant animal models in association with reductions in insulin and glucose levels. To assess the vascular effects of thiazolidinediones, independent of their metabolic effects, we observed the effect of rosiglitazone on diabetes-associated atherosclerosis in a model of insulin insufficiency. Methods and Results—Control and diabetic apolipoprotein E–deficient mice received rosiglitazone or placebo. Diabetic mice demonstrated a 3-fold increase in plaque area, which was attenuated by rosiglitazone. There was no significant difference in glucose, insulin, or cholesterol levels between treated and untreated diabetic animals. Rosiglitazone attenuated the increase in superoxide production observed in diabetic mice. A 4-fold increase in the reverse cholesterol transport marker ABCA1 was observed in treated diabetic mice. Rosiglitazone reduced angiotensin II receptor gene expression in control and diabetic mice, and macrophage accumulation was increased in diabetic mice compared with controls and was attenuated by rosiglitazone. Conclusions—These findings suggest peroxisome proliferator-activated receptor-&ggr; ligands such as rosiglitazone confer vascular protection independent of their effects on metabolic control. These antiatherosclerotic effects may have important clinical ramifications not only in insulin resistance/type 2 diabetes and also in type 1 diabetes.


Diabetes | 1997

Role of Angiotensin II and Bradykinin in Experimental Diabetic Nephropathy: Functional and Structural Studies

Terri J. Allen; Zemin Cao; Sherif Youssef; U L Hulthén; Mark E. Cooper

We explored the relative roles of the suppression of angiotensin II and the prevention of bradykinin degradation in mediating the renoprotective effects of ACE inhibitors in experimental diabetic nephropathy. Over a 24-week period, we studied male Sprague-Dawley diabetic and control rats and Sprague-Dawley diabetic rats treated with the ACE inhibitor ramipril, the angiotensin II-AT1 receptor antagonist valsartan, the bradykinin-B2 receptor antagonist HOE 140 (icatibant), and a combination of ramipril and icatibant. Serial measurements of urinary albumin excretion, blood pressure, and glycated hemoglobin were performed monthly. After 6 months, the animals were killed for the measurement of kidney weight and the assessment of glomerular ultrastructure. Over 24 weeks, urinary albumin excretion showed a continuous rise in the untreated diabetic rats. Both ramipril and valsartan, which were equihypotensive, prevented the increase in urinary albumin excretion over the whole study period. Icatibant therapy did not attenuate the antialbuminuric effect of the ACE inhibitor, nor did it have any effect as the sole therapy. Diabetes was associated with increased glomerular basement membrane thickness, glomerular volume, and total mesangial volume. Both ACE inhibition and angiotensin II receptor antagonism attenuated the glomerular ultrastructural changes to a similar degree. Icatibant did not attenuate the effects of ramipril on glomerular morphology. ACE inhibitors and angiotensin II-ATE receptor blockers appear to confer similar benefits in experimental diabetic nephropathy, and bradykinin-B2 receptor blockers do not influence this effect. These findings suggest that the blockade of angiotensin II is the major pathway responsible for renoprotection afforded by ACE inhibition in experimental diabetic nephropathy.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2004

Imatinib Attenuates Diabetes-Associated Atherosclerosis

Markus Lassila; Terri J. Allen; Zemin Cao; Vicki Thallas; Karin Jandeleit-Dahm; Riccardo Candido; Mark E. Cooper

Objective—Diabetes is associated with accelerated atherosclerosis, the major factor contributing to increased mortality and morbidity in the diabetic population. The molecular mechanisms by which diabetes promotes atherosclerosis are not fully understood. Platelet-derived growth factor has been shown to play a major role in the pathology of vascular diseases, but whether it plays a role in atherosclerosis associated with diabetes remains unknown. The aims of this study were to assess whether platelet-derived growth factor–dependent pathways are involved in the development of diabetes-induced atherosclerosis and to determine the effects of platelet-derived growth factor receptor antagonism on this disorder. Methods and Results—Diabetes was induced by injection of streptozotocin in 6-week-old apolipoprotein E knockout mice. Diabetic animals received treatment with a tyrosine kinase inhibitor that inhibits platelet-derived growth factor action, imatinib (STI-571, 10 mg/kg per day), or no treatment for 20 weeks. Nondiabetic apolipoprotein E knockout mice served as controls. Induction of diabetes was associated with a 5-fold increase in plaque area in association with an increase in aortic platelet-derived growth factor-B expression and platelet-derived growth factor-β receptor phosphorylation as well as other prosclerotic and proinflammatory cytokines. Imatinib treatment prevented the development of atherosclerotic lesions and diabetes-induced inflammatory cytokine overexpression in the aorta. Conclusions—Tyrosine kinase inhibition with imatinib appears to be a novel therapeutic option to retard the development of atherosclerosis, specifically in the context of diabetes.

Collaboration


Dive into the Terri J. Allen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zemin Cao

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge