Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tessa Lord is active.

Publication


Featured researches published by Tessa Lord.


Biology of Reproduction | 2013

Melatonin Prevents Postovulatory Oocyte Aging in the Mouse and Extends the Window for Optimal Fertilization In Vitro

Tessa Lord; Brett Nixon; Keith T. Jones; R. John Aitken

ABSTRACT The quality of metaphase II oocytes deteriorates rapidly following ovulation as the result of an aging process associated with impaired fertilizing potential, disrupted developmental competence, and increased likelihood of embryonic resorption. Because oxidative stress accelerates the onset of apoptosis in oocytes and influences their capacity for fertilization, this study aimed to characterize the significance of such stress in the postovulatory aging of mouse oocytes in vitro. We investigated the ability of the potent antioxidant melatonin to arrest the aging process when used to supplement oocyte culture medium. This study demonstrated that oxidative stress may occur in oocytes after as little as 8 h in culture and coincides with the appearance of early apoptotic markers such as phosphatidylserine externalization, followed 16 h later by caspase activation (P < 0.05) and morphological evidence of oocyte senescence. Importantly, supplementation of oocyte culture medium with 1 mM melatonin was able to significantly relieve the time-dependent appearance of oxidative stress in oocytes (P < 0.05) and, as a result, significantly delay the onset of apoptosis (P < 0.05). Furthermore, melatonin supplementation extended the optimal window for fertilization of oocytes aged for 8 and 16 h in vitro (P < 0.05) and significantly improved the quality of the resulting embryos (P < 0.01). We conclude that melatonin may be a useful tool in a clinical setting to prevent the time-dependent deterioration of oocyte quality following prolonged culture in vitro.


Reproduction | 2013

Oxidative stress and ageing of the post-ovulatory oocyte

Tessa Lord; R. John Aitken

With extended periods of time following ovulation, the metaphase II stage oocyte experiences deterioration in quality referred to as post-ovulatory oocyte ageing. Post-ovulatory ageing occurs both in vivo and in vitro and has been associated with reduced fertilization rates, poor embryo quality, post-implantation errors and abnormalities in the offspring. Although the physiological consequences of post-ovulatory oocyte ageing have largely been established, the molecular mechanisms controlling this process are not well defined. This review analyses the relationships between biochemical changes exhibited by the ageing oocyte and the symptoms associated with the ageing phenotype. We also discuss molecular events that are potentially involved in orchestrating post-ovulatory ageing with a particular focus on the role of oxidative stress. We propose that oxidative stress may act as the initiator for a cascade of events that create the aged oocyte phenotype. Specifically, oxidative stress has the capacity to cause a decline in levels of critical cell cycle factors such as maturation-promoting factor, impair calcium homoeostasis, induce mitochondrial dysfunction and directly damage multiple intracellular components of the oocyte such as lipids, proteins and DNA. Finally, this review addresses current strategies for delaying post-ovulatory oocyte ageing with a particular focus on the potential use of compounds such as caffeine or selected antioxidants in the development of more refined media for the preservation of oocyte integrity during IVF procedures.


Journal of Biological Chemistry | 2012

Dynamin Regulates Specific Membrane Fusion Events Necessary for Acrosomal Exocytosis in Mouse Spermatozoa

Andrew T. Reid; Tessa Lord; Simone J. Stanger; Shaun D. Roman; Adam McCluskey; Phillip J. Robinson; R. John Aitken; Brett Nixon

Background: Mammalian fertilization is preceded by sperm acrosomal exocytosis. Results: The GTPases, dynamin 1 and 2, were identified within the periacrosomal region of the mouse sperm head and shown to participate in a progesterone-induced acrosome reaction. Conclusion: Dynamin forms part of the molecular machinery that underpins acrosomal exocytosis. Significance: These data provide an important mechanistic insight into the molecular basis of the sperm acrosome reaction. Mammalian spermatozoa must complete an acrosome reaction prior to fertilizing an oocyte. The acrosome reaction is a unique exocytotic event involving a series of prolonged membrane fusions that ultimately result in the production of membrane vesicles and release of the acrosomal contents. This event requires the concerted action of a large number of fusion-competent signaling and scaffolding proteins. Here we show that two different members of the dynamin GTPase family localize to the developing acrosome of maturing mouse germ cells. Both dynamin 1 and 2 also remain within the periacrosomal region of mature mouse spermatozoa and are thus well positioned to regulate the acrosome reaction. Two pharmacological inhibitors of dynamin, dynasore and Dyngo-4a, blocked the in vitro induction of acrosomal exocytosis by progesterone, but not by the calcium ionophore A23187, and elicited a concomitant reduction of in vitro fertilization. In vivo treatment with these inhibitors also resulted in spermatozoa displaying reduced acrosome reaction potential. Dynamin 1 and 2 phosphorylation increased on progesterone treatment, and this was also selectively blocked by dynasore. On the basis of our collective data, we propose that dynamin could regulate specific membrane fusion events necessary for acrosomal exocytosis in mouse spermatozoa.


Development | 2017

ID4 levels dictate the stem cell state in mouse spermatogonia

Aileen R. Helsel; Qi-En Yang; Melissa J. Oatley; Tessa Lord; Fred Sablitzky; Jon M. Oatley

Spermatogenesis is a classic model of cycling cell lineages that depend on a balance between stem cell self-renewal for continuity and the formation of progenitors as the initial step in the production of differentiated cells. The mechanisms that guide the continuum of spermatogonial stem cell (SSC) to progenitor spermatogonial transition and precise identifiers of subtypes in the process are undefined. Here we used an Id4-eGfp reporter mouse to discover that EGFP intensity is predictive of the subsets, with the ID4-EGFPBright population being mostly, if not purely, SSCs, whereas the ID4-EGFPDim population is in transition to the progenitor state. These subsets are also distinguishable by transcriptome signatures. Moreover, using a conditional overexpression mouse model, we found that transition from the stem cell to the immediate progenitor state requires downregulation of Id4 coincident with a major change in the transcriptome. Collectively, our results demonstrate that the level of ID4 is predictive of stem cell or progenitor capacity in spermatogonia and dictates the interface of transition between the different functional states. Summary: The level of ID4 expression distinguishes stem cells and immediate progenitors in mammalian spermatogonial cells, while downregulation of ID4 is required for transition between the functional states.


Biology of Reproduction | 2015

Accumulation of Electrophilic Aldehydes During Postovulatory Aging of Mouse Oocytes Causes Reduced Fertility, Oxidative Stress, and Apoptosis

Tessa Lord; Jacinta H. Martin; R. John Aitken

ABSTRACT With increasing periods of time following ovulation, the metaphase II (MII)-stage oocyte experiences overproduction of reactive oxygen species and elevated levels of lipid peroxidation that are implicitly linked with functional deficiencies acquired during postovulatory oocyte aging. We have demonstrated that the electrophilic aldehydes 4-hydroxynonenal (4HNE), malondialdehyde, and acrolein are by-products of nonenzymatic lipid peroxidation in the murine MII-stage oocyte, adducting to multiple proteins within the cell. The covalent modification of oocyte proteins by these aldehydes increased with extended periods of time postovulation; the mitochondrial protein succinate dehydrogenase (SDHA) was identified as a primary target for 4HNE adduction. Time- and dose-dependent studies revealed that exposure to elevated levels of electrophilic aldehydes causes mitochondrial reactive oxygen species production, lipid peroxidation, loss of mitochondrial membrane potential, and eventual apoptosis within the MII oocyte, presumably as a consequence of electron transport chain collapse following SDHA adduction. Additionally, we have determined that short-term exposure to low doses of 4HNE dramatically impairs the oocytes ability to participate in fertilization and support embryonic development; however, this loss of functionality can be prevented by supplementation with the antioxidant penicillamine. In conclusion, this study has revealed that the accumulation of electrophilic aldehydes is linked to postovulatory oocyte aging, causing reduced fertility, oxidative stress, and apoptosis of this highly specialized cell. These data highlight the importance of timely fertilization of the mammalian oocyte postovulation and emphasize the potential advantages associated with antioxidant supplementation of oocyte culture medium in circumstances where reinsemination of oocytes may be desirable (i.e., rescue intracytoplasmic sperm injection), or where in vitro fertilization may be delayed.


Developmental Biology | 2016

Identification of a key role for permeability glycoprotein in enhancing the cellular defense mechanisms of fertilized oocytes.

Jacinta H. Martin; Brett Nixon; Tessa Lord; Elizabeth G. Bromfield; R. John Aitken

Double strand breaks (DSBs) are highly damaging DNA lesions that can destabilize the genome and generate a suite of adverse physiological outcomes in the oocyte and early embryo. While it is therefore likely that these cells possess a sophisticated suite of protective mechanisms to ameliorate such damage, the precise nature of these defense systems are yet to be fully elucidated. This study characterizes the sensitivity of the oocyte to etoposide, a chemotherapeutic agent with the ability to elicit DSBs. We demonstrate significant developmental changes in etoposide vulnerability, with fertilization of the oocyte leading to an enhancement of its cellular defense machinery. Using a parthenogenic model we show that this response is mediated, at least in part, by permeability glycoprotein (PGP), an endogenous multidrug efflux transporter that is up-regulated, translocated to the oolemma and phosphorylated upon oocyte activation. Moreover, evidence from dye exclusion assays in the presence of a specific PGP pharmacological inhibitor (PSC833), illustrates that these events effectively increase oocyte efflux activity, thereby enhancing the ability of these cells to exclude genotoxicants capable of eliciting DSB formation.


Stem cell reports | 2018

Testicular Architecture Is Critical for Mediation of Retinoic Acid Responsiveness by Undifferentiated Spermatogonial Subtypes in the Mouse

Tessa Lord; Melissa J. Oatley; Jon M. Oatley

Summary Spermatogenesis requires retinoic acid (RA) induction of the undifferentiated to differentiating transition in transit amplifying (TA) progenitor spermatogonia, whereas continuity of the spermatogenic lineage relies on the RA response being suppressed in spermatogonial stem cells (SSCs). Here, we discovered that, in mouse testes, both spermatogonial populations possess intrinsic RA-response machinery and exhibit hallmarks of the differentiating transition following direct exposure to RA, including loss of SSC regenerative capacity. We determined that SSCs are only resistant to RA-driven differentiation when situated in the normal topological organization of the testis. Furthermore, we show that the soma is instrumental in “priming” TA progenitors for RA-induced differentiation through elevated RA receptor expression. Collectively, these findings indicate that SSCs and TA progenitor spermatogonia inhabit disparate niche microenvironments within seminiferous tubules that are critical for mediating extrinsic cues that drive fate decisions.


Data in Brief | 2016

Data on the concentrations of etoposide, PSC833, BAPTA-AM, and cycloheximide that do not compromise the vitality of mature mouse oocytes, parthenogenetically activated and fertilized embryos

Jacinta H. Martin; Elizabeth G. Bromfield; R. John Aitken; Tessa Lord; Brett Nixon

These data document the vitality of mature mouse oocytes (Metaphase II (MII)) and early stage embryos (zygotes) following exposure to the genotoxic chemotherapeutic agent, etoposide, in combination with PSC833, a selective inhibitor of permeability glycoprotein. They also illustrate the vitality of parthenogenetically activated and fertilized embryos following incubation with the calcium chelator BAPTA-AM (1,2-Bis(2-aminophenoxy)ethane- N,N,N′,N′-tetraacetic acid tetrakis (acetoxymethyl ester)), cycloheximide (an antibiotic that is capable of inhibiting protein synthesis), and hydrogen peroxide (a potent reactive oxygen species). Finally, they present evidence that permeability glycoprotein is not represented in the proteome of mouse spermatozoa. Our interpretation and discussion of these data feature in the article “Identification of a key role for permeability glycoprotein in enhancing the cellular defense mechanisms of fertilized oocytes” (Martin et al., in press) [1].


Archive | 2017

Regulation of Spermatogonial Stem Cell Maintenance and Self-Renewal

Tessa Lord; Jon M. Oatley

Spermatogonial stem cells (SSCs) reside within the stem cell niche along the basement membrane of the seminiferous tubules in the testis, and their actions provide the basis for continuity and regeneration of the spermatogenic lineage. SSCs must balance self-renewal with the production of progenitor spermatogonia in order to sustain optimal sperm production while preventing exhaustion of the stem cell reservoir. Regulation of SSC fate decision is in part influenced by signaling from growth factors, such as Gdnf and Fgf2, which are synthesized by somatic niche support cells. Such growth factors have been shown to directly influence expression of transcription factors such as Id4, Etv5, and Bcl6b within SSCs to stimulate self-renewal. Additionally, the undifferentiated state of both SSCs and progenitors is maintained by virtue of intracellular regulation at transcriptional, translational, and posttranslational levels; both independently and dependently of characterized growth factors released from the niche. This intrinsic regulation not only acts to enrich the expression of genes important for maintaining the undifferentiated state, but also supresses expression of differentiation-driving factors. Although progress in SSC research has previously been dampened by a lack of SSC-specific markers that can be used to isolate pure populations for analysis, recent advances have seen the development of mouse lines in which the SSC population alone is marked by expression of a fluorescent reporter transgene; for example the Id4-eGfp mouse line. Consequently, in-depth analysis of the SSC population in comparison to undifferentiated progenitors and differentiating spermatogonia is now possible. Further progress in characterizing factors involved in SSC maintenance and self-renewal is important for understanding potential underlying causes of idiopathic infertility, and further, is the basis for developing therapeutic strategies aimed at reinstating fertility in patients who have been rendered infertile as a consequence of chemotherapeutic treatments in pre-pubertal life.


Stem Cell Research | 2018

Functional assessment of spermatogonial stem cell purity in experimental cell populations

Tessa Lord; Jon M. Oatley

Historically, research in spermatogonial biology has been hindered by a lack of validated approaches to identify and isolate pure populations of the various spermatogonial subsets for in-depth analysis. In particular, although a number of markers of the undifferentiated spermatogonial population have now been characterized, standardized methodology for assessing their specificity to the spermatogonial stem cell (SSC) and transit amplifying progenitor pools has been lacking. To date, SSC content within an undefined population of spermatogonia has been inferred using either lineage tracing or spermatogonial transplantation analyses which generate qualitative and quantitative data, respectively. Therefore, these techniques are not directly comparable, and are subject to variable interpretations as to a readout that is representative of a ‘pure’ SSC population. We propose standardization across the field for determining the SSC purity of a population via use of a limiting dilution transplantation assay that would eliminate subjectivity and help to minimize the generation of inconsistent data on ‘SSC’ populations. In the limiting dilution transplantation assay, a population of LacZ-expressing spermatogonia are selected based on a putative SSC marker, and a small, defined number of cells (i.e. 10 cells) are microinjected into the testis of a germ cell-deficient recipient mouse. Using colony counts and an estimated colonization efficiency of 5%; a quantitative value can be calculated that represents SSC purity in the starting population. The utilization of this technique would not only be useful to link functional relevance to novel markers that will be identified in the future, but also for providing validation of purity for marker-selected populations of spermatogonia that are commonly considered to be SSCs by many researchers in the field of spermatogenesis and stem cell biology.

Collaboration


Dive into the Tessa Lord's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jon M. Oatley

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Brett Nixon

University of Newcastle

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melissa J. Oatley

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Phillip J. Robinson

Children's Medical Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge