Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tetsuhiro Kakimoto is active.

Publication


Featured researches published by Tetsuhiro Kakimoto.


European Journal of Pharmacology | 2014

The novel dipeptidyl peptidase-4 inhibitor teneligliptin prevents high-fat diet-induced obesity accompanied with increased energy expenditure in mice

Sayaka Fukuda-Tsuru; Tetsuhiro Kakimoto; Hiroyuki Utsumi; Satoko Kiuchi; Shinichi Ishii

Dipeptidyl peptidase-4 (DPP-4)-deficient mice exhibit prevention of obesity with increased energy expenditure, whereas currently available DPP-4 inhibitors do not induce similar changes. We investigated the impact of the novel DPP-4 inhibitor teneligliptin on body weight, energy expenditure, and obesity-related manifestations in diet-induced obese mice. Six-weeks-old C57BL/6N mice were fed a high-fat diet (60%kcal fat) ad libitum and administered teneligliptin (30 or 60mg/kg) via drinking water for 10 weeks. Mice fed a high-fat diet showed accelerated body weight gain. In contrast, compared with the vehicle group, the administration of teneligliptin reduced body weight to 88% and 71% at dose of 30mg/kg/day and 60mg/kg/day, respectively. Although there was no change in locomotor activity, indirect calorimetry studies showed that teneligliptin (60mg/kg) increased oxygen consumption by 22%. Adipocyte hypertrophy and hepatic steatosis induced by a high-fat diet were suppressed by teneligliptin. The mean adipocyte size in the 60-mg/kg treatment group was 44% and hepatic triglyceride levels were 34% of the levels in the vehicle group. Furthermore, treatment with teneligliptin (60mg/kg) reduced plasma levels of insulin to 40% and increased the glucose infusion rate to 39%, as measured in the euglycemic clamp study, indicating its beneficial effect on insulin resistance. We showed for the first time that the DPP-4 inhibitor prevents obesity and obesity-related manifestations with increased energy expenditure. Our findings suggest the potential utility of teneligliptin for the treatment of a broad spectrum of metabolic disorders related to obesity beyond glycemic control.


Journal of Endocrinology | 2014

Automated image analysis of a glomerular injury marker desmin in spontaneously diabetic Torii rats treated with losartan

Tetsuhiro Kakimoto; Kinya Okada; Yoshihiro Hirohashi; Raissa Relator; Mizue Kawai; Taku Iguchi; Keisuke Fujitaka; Masashi Nishio; Tsuyoshi Kato; Atsushi Fukunari; Hiroyuki Utsumi

Diabetic nephropathy is a major complication in diabetes and a leading cause of end-stage renal failure. Glomerular podocytes are functionally and structurally injured early in diabetic nephropathy. A non-obese type 2 diabetes model, the spontaneously diabetic Torii (SDT) rat, is of increasing preclinical interest because of its pathophysiological similarities to human type 2 diabetic complications including diabetic nephropathy. However, podocyte injury in SDT rat glomeruli and the effect of angiotensin II receptor blocker treatment in the early stage have not been reported in detail. Therefore, we have evaluated early stages of glomerular podocyte damage and the beneficial effect of early treatment with losartan in SDT rats using desmin as a sensitive podocyte injury marker. Moreover, we have developed an automated, computational glomerulus recognition method and illustrated its specific application for quantitatively studying glomerular desmin immunoreactivity. This state-of-the-art method enabled automatic recognition and quantification of glomerular desmin-positive areas, eliminating the need to laboriously trace glomerulus borders by hand. The image analysis method not only enabled assessment of a large number of glomeruli, but also clearly demonstrated that glomerular injury was more severe in the juxtamedullary region than in the superficial cortex region. This applied not only in SDT rat diabetic nephropathy but also in puromycin aminonucleoside-induced nephropathy, which was also studied. The proposed glomerulus image analysis method combined with desmin immunohistochemistry should facilitate evaluations in preclinical drug efficacy studies as well as elucidation of the pathophysiology of diabetic nephropathy.


Journal of Pharmacology and Experimental Therapeutics | 2014

Analysis of the Effect of Canagliflozin on Renal Glucose Reabsorption and Progression of Hyperglycemia in Zucker Diabetic Fatty Rats

Chiaki Kuriyama; Jun Zhi Xu; Seunghun Lee; Jenson Qi; Hirotaka Kimata; Tetsuhiro Kakimoto; Keiko Nakayama; Yoshinori Watanabe; Nobuhiko Taniuchi; Kumiko Hikida; Yasuaki Matsushita; Kenji Arakawa; Akira Saito; Kiichiro Ueta; Masaharu Shiotani

Sodium–glucose cotransporter 2 (SGLT2) plays a major role in renal glucose reabsorption. To analyze the potential of insulin-independent blood glucose control, the effects of the novel SGLT2 inhibitor canagliflozin on renal glucose reabsorption and the progression of hyperglycemia were analyzed in Zucker diabetic fatty (ZDF) rats. The transporter activity of recombinant human and rat SGLT2 was inhibited by canagliflozin, with 150- to 12,000-fold selectivity over other glucose transporters. Moreover, in vivo treatment with canagliflozin induced glucosuria in mice, rats, and dogs in a dose-dependent manner. It inhibited apparent glucose reabsorption by 55% in normoglycemic rats and by 94% in hyperglycemic rats. The inhibition of glucose reabsorption markedly reduced hyperglycemia in ZDF rats but did not induce hypoglycemia in normoglycemic animals. The change in urinary glucose excretion should not be used as a marker to predict the glycemic effects of this SGLT2 inhibitor. In ZDF rats, plasma glucose and HbA1c levels progressively increased with age, and pancreatic β-cell failure developed at 13 weeks of age. Treatment with canagliflozin for 8 weeks from the prediabetic stage suppressed the progression of hyperglycemia, prevented the decrease in plasma insulin levels, increased pancreatic insulin contents, and minimized the deterioration of islet structure. These results indicate that selective inhibition of SGLT2 with canagliflozin controls the progression of hyperglycemia by inhibiting renal glucose reabsorption in ZDF rats. In addition, the preservation of β-cell function suggests that canagliflozin treatment reduces glucose toxicity via an insulin-independent mechanism.


BMC Bioinformatics | 2015

Segmental HOG: new descriptor for glomerulus detection in kidney microscopy image

Tsuyoshi Kato; Raissa Relator; Hayliang Ngouv; Yoshihiro Hirohashi; Osamu Takaki; Tetsuhiro Kakimoto; Kinya Okada

BackgroundThe detection of the glomeruli is a key step in the histopathological evaluation of microscopic images of the kidneys. However, the task of automatic detection of the glomeruli poses challenges owing to the differences in their sizes and shapes in renal sections as well as the extensive variations in their intensities due to heterogeneity in immunohistochemistry staining.Although the rectangular histogram of oriented gradients (Rectangular HOG) is a widely recognized powerful descriptor for general object detection, it shows many false positives owing to the aforementioned difficulties in the context of glomeruli detection.ResultsA new descriptor referred to as Segmental HOG was developed to perform a comprehensive detection of hundreds of glomeruli in images of whole kidney sections. The new descriptor possesses flexible blocks that can be adaptively fitted to input images in order to acquire robustness for the detection of the glomeruli. Moreover, the novel segmentation technique employed herewith generates high-quality segmentation outputs, and the algorithm is assured to converge to an optimal solution. Consequently, experiments using real-world image data revealed that Segmental HOG achieved significant improvements in detection performance compared to Rectangular HOG.ConclusionThe proposed descriptor for glomeruli detection presents promising results, and it is expected to be useful in pathological evaluation.


Journal of Endocrinology | 2013

Automated recognition and quantification of pancreatic islets in Zucker diabetic fatty rats treated with exendin-4

Tetsuhiro Kakimoto; Hirotaka Kimata; Satoshi Iwasaki; Atsushi Fukunari; Hiroyuki Utsumi

Type 2 diabetes is characterized by impaired insulin secretion from pancreatic β-cells. Quantification of the islet area in addition to the insulin-positive area is important for detailed understanding of pancreatic islet histopathology. Here we show computerized automatic recognition of the islets of Langerhans as a novel high-throughput method to quantify islet histopathology. We utilized state-of-the-art tissue pattern recognition software to enable automatic recognition of islets, eliminating the need to laboriously trace islet borders by hand. After training by a histologist, the software successfully recognized even irregularly shaped islets with depleted insulin immunostaining, which were quite difficult to automatically recognize. The results from automated image analysis were highly correlated with those from manual image analysis. To establish whether this automated, rapid, and objective determination of islet area will facilitate studies of islet histopathology, we showed the beneficial effect of chronic exendin-4, a glucagon-like peptide-1 analog, treatment on islet histopathology in Zucker diabetic fatty (ZDF) rats. Automated image analysis provided qualitative and quantitative evidence that exendin-4 treatment ameliorated the loss of pancreatic insulin content and gave rise to islet hypertrophy. We also showed that glucagon-positive α-cell area was decreased significantly in ZDF rat islets with disorganized structure. This study is the first to demonstrate the utility of automatic quantification of digital images to study pancreatic islet histopathology. The proposed method will facilitate evaluations in preclinical drug efficacy studies as well as elucidation of the pathophysiology of diabetes.


Experimental and Toxicologic Pathology | 2015

Quantitative analysis of markers of podocyte injury in the rat puromycin aminonucleoside nephropathy model

Tetsuhiro Kakimoto; Kinya Okada; Keisuke Fujitaka; Masashi Nishio; Tsuyoshi Kato; Atsushi Fukunari; Hiroyuki Utsumi

Podocytes are an essential component of the renal glomerular filtration barrier, their injury playing an early and important role in progressive renal dysfunction. This makes quantification of podocyte marker immunoreactivity important for early detection of glomerular histopathological changes. Here we have specifically applied a state-of-the-art automated computational method of glomerulus recognition, which we have recently developed, to study quantitatively podocyte markers in a model with selective podocyte injury, namely the rat puromycin aminonucleoside (PAN) nephropathy model. We also retrospectively investigated mRNA expression levels of these markers in glomeruli which were isolated from the same formalin-fixed, paraffin-embedded kidney samples by laser microdissection. Among the examined podocyte markers, the immunopositive area and mRNA expression level of both podoplanin and synaptopodin were decreased in PAN glomeruli. The immunopositive area of podocin showed a slight decrease in PAN glomeruli, while its mRNA level showed no change. We have also identified a novel podocyte injury marker β-enolase, which was increased exclusively by podocytes in PAN glomeruli, similarly to another widely used marker, desmin. Thus, we have shown the specific application of a state-of-the-art computational method and retrospective mRNA expression analysis to quantitatively study the changes of various podocyte markers. The proposed methods will open new avenues for quantitative elucidation of renal glomerular histopathology.


Molecular Medicine Reports | 2015

Inhibitory effects of fasudil on renal interstitial fibrosis induced by unilateral ureteral obstruction

Itsuko Baba; Yasuhiro Egi; Hiroyuki Utsumi; Tetsuhiro Kakimoto; Kazuo Suzuki

Renal fibrosis is the major cause of chronic kidney disease, and the Rho/Rho-associated coiled-coil kinase (ROCK) signaling cascade is involved in the renal fibrotic processes. Several studies have reported that ROCK inhibitors attenuate renal fibrosis. However, the mechanism of this process remains to be fully elucidated. The present study assessed the inhibitory effect of fasudil, a ROCK inhibitor using immunohistochemistry, reverse transcription-quantitative polymerase chain reaction and western blot analyses, in vivo and in vitro, to elucidate the mechanisms underlying renal interstitial fibrosis. In mice induced with unilateral ureteral obstruction (UUO), collagen accumulation, the expression of fibrosis-associated genes and the content of hydroxyproline in the kidney increased 3, 7, and 14 days following UUO. Fasudil attenuated the histological changes, and the production of collagen and extracellular matrix in the UUO kidney. The expression of α-smooth muscle actin (α-SMA) and the transforming growth factor-β (TGFβ)-Smad signaling pathway, and macrophage infiltration were suppressed by fasudil in the kidneys of the UUO mice. The present study also evaluated the role of intrinsic renal cells and infiltrated macrophages using NRK-52E, NRK-49F and RAW264.7 cells. The mRNA and protein expression levels of collagen I and α-SMA increased in the NRK-52E and NRK-49F cells stimulated by TGF-β1. Hydroxyfasudil, a bioactive metabolite of fasudil, attenuated the increase in the mRNA and protein expression levles of α-SMA in the two cell types. However, the reduction in the mRNA expression of collagen I was observed in the NRK-49F cells only. Hydroxyfasudil decreased the mRNA expression of monocyte chemoattractant protein-1 (MCP-1) induced by TGF-β1 in the NRK-52E cells, but not in the NRK-49F cells. In the RAW264.7 cells, the mRNA expression levels of MCP-1, interleukin (IL)-1β, IL-6 and tumor necrosis factor α were increased significantly following lipopolysaccharide stimulation, and were not suppressed by hydroxyfasudil. These data suggested that the inhibition of ROCK activity by fasudil suppressed the transformation of renal intrinsic cells into the myofibroblast cells, and attenuated the infiltration of macrophages, without inhibiting the expression or the activation of cytokine/chemokines, in the progression of renal interstitial fibrosis.


Journal of Toxicologic Pathology | 2017

Quantitative analysis of histopathological findings using image processing software

Yasushi Horai; Tetsuhiro Kakimoto; Kana Takemoto; Masaharu Tanaka

In evaluating pathological changes in drug efficacy and toxicity studies, morphometric analysis can be quite robust. In this experiment, we examined whether morphometric changes of major pathological findings in various tissue specimens stained with hematoxylin and eosin could be recognized and quantified using image processing software. Using Tissue Studio, hypertrophy of hepatocytes and adrenocortical cells could be quantified based on the method of a previous report, but the regions of red pulp, white pulp, and marginal zones in the spleen could not be recognized when using one setting condition. Using Image-Pro Plus, lipid-derived vacuoles in the liver and mucin-derived vacuoles in the intestinal mucosa could be quantified using two criteria (area and/or roundness). Vacuoles derived from phospholipid could not be quantified when small lipid deposition coexisted in the liver and adrenal cortex. Mononuclear inflammatory cell infiltration in the liver could be quantified to some extent, except for specimens with many clustered infiltrating cells. Adipocyte size and the mean linear intercept could be quantified easily and efficiently using morphological processing and the macro tool equipped in Image-Pro Plus. These methodologies are expected to form a base system that can recognize morphometric features and analyze quantitatively pathological findings through the use of information technology.


Histochemistry and Cell Biology | 2018

Validation of an easily applicable three-dimensional immunohistochemical imaging method for a mouse brain using conventional confocal microscopy

Tetsuhiro Kakimoto


Archive | 2014

AUTHOR COPY ONLY Automated image analysis of a glomerular injury marker desmin in spontaneously diabetic Torii rats treated with losartan

Tetsuhiro Kakimoto; Kinya Okada; Yoshihiro Hirohashi; Raissa Relator; Mizue Kawai; Taku Iguchi; Keisuke Fujitaka; Masashi Nishio; Tsuyoshi Kato; Atsushi Fukunari; Hiroyuki Utsumi; Mitsubishi Tanabe

Collaboration


Dive into the Tetsuhiro Kakimoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kinya Okada

Mitsubishi Tanabe Pharma

View shared research outputs
Top Co-Authors

Avatar

Tsuyoshi Kato

Mitsubishi Tanabe Pharma

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masashi Nishio

Mitsubishi Tanabe Pharma

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mizue Kawai

Mitsubishi Tanabe Pharma

View shared research outputs
Researchain Logo
Decentralizing Knowledge