Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tetsuo Suzawa is active.

Publication


Featured researches published by Tetsuo Suzawa.


Biomaterials | 2010

The enhanced characteristics of osteoblast adhesion to photofunctionalized nanoscale TiO2 layers on biomaterials surfaces.

Tomohiko Miyauchi; Masahiro Yamada; Akiko Yamamoto; Fuminori Iwasa; Tetsuo Suzawa; Ryutaro Kamijo; Kazuyoshi Baba; Takahiro Ogawa

Recently, UV photofunctionalization of titanium has been shown to be effective in enhancing osteogenic environment around this functional surface, in particular for the use of endosseous implants. However, the underlying mechanism remains unknown and its potential application to other tissue engineering materials has never been explored. We determined whether adhesion of a single osteoblast is enhanced on UV-treated nano-thin TiO(2) layer with virtually no surface roughness or topographical features. Rat bone marrow-derived osteoblasts were cultured on UV-treated or untreated 200-nm thick TiO(2) sputter-coated glass plates. After an incubation of 3 h, the mean critical shear force required to initiate detachment of a single osteoblast was determined to be 1280 +/- 430 nN on UV-treated TiO(2) surfaces, which was 2.5-fold greater than the force required on untreated TiO(2) surfaces. The total energy required to complete the detachment was 37.0 +/- 23.2 pJ on UV-treated surfaces, 3.5-fold greater than that required on untreated surfaces. Such substantial increases in single cell adhesion were also observed for osteoblasts cultured for 24 h. Osteoblasts on UV-treated TiO(2) surfaces were larger and characterized with increased levels of vinculin expression and focal contact formation. However, the density of vinculin or focal contact was not influenced by UV treatment. In contrast, both total expression and density of actin fibers increased on UV-treated surfaces. Thin layer TiO(2) coating and UV treatment of Co-Cr alloy and PTFE membrane synergistically resulted in a significant increase in the ability of cell attachment and osteoblastic production of alkaline phosphatase. These results indicated that the adhesive nature of a single osteoblast is substantially enhanced on UV-treated TiO(2) surfaces, providing the first evidence showing that each individual cell attached to these surfaces is substantially more resistant to exogenous load potentially from blood and fluid flow and mechanical force in the initial stage of in vivo biological environment. This enhanced osteoblast adhesion was supported synergistically but disproportionately by enhancement in focal adhesion and cytoskeletal developments. Also, this study demonstrated that UV treatment is effective on nano-thin TiO(2) depositioned onto non-Ti materials to enhance their bioactivity, providing a basis for TiO(2)-mediated photofunctionalization of biomaterials, a new method of developing functional biomaterials.


Journal of Immunology | 2006

Identification and Characterization of the Precursors Committed to Osteoclasts Induced by TNF-Related Activation-Induced Cytokine/Receptor Activator of NF-κB Ligand

Ayako Mochizuki; Masamichi Takami; Tadaharu Kawawa; Reina Suzumoto; Takahisa Sasaki; Akihiko Shiba; Hiroaki Tsukasaki; Baohong Zhao; Rika Yasuhara; Tetsuo Suzawa; Yoichi Miyamoto; Yongwon Choi; Ryutaro Kamijo

Osteoclasts are terminally differentiated from cells of monocyte/macrophage lineage by stimulation with TNF-related activation-induced cytokine (TRANCE) (receptor activator of NF-κB ligand/osteoprotegerin ligand/osteoclast differentiation factor/TNFSF11/CD254). In the present study, we attempted to determine when and how the cell fate of precursors becomes committed to osteoclasts following TRANCE stimulation. Although mouse bone marrow-derived macrophages (BMMs) were able to differentiate into either osteoclasts or dendritic cells, the cells no longer differentiated into dendritic cells after treatment with TRANCE for 24 h, indicating that their cell fate was committed to osteoclasts. Committed cells as well as BMMs were still quite weak in tartrate-resistant acid phosphatase activity, an osteoclast marker, and incorporated zymosan particles by phagocytosis. Interestingly, committed cells, but not BMMs, could still differentiate into osteoclasts even after incorporation of the zymosan particles. Furthermore, IL-4 and IFN-γ, potent inhibitors of osteoclast differentiation, failed to inhibit osteoclast differentiation from committed cells, and blocking of TRANCE stimulation by osteoprotegerin resulted in cell death. Adhesion to culture plates was believed to be essential for osteoclast differentiation; however, committed cells, but not BMMs, differentiated into multinucleated osteoclasts without adhesion to culture plates. Although LPS activated the NF-κB-mediated pathway in BMMs as well as in committed cells, the mRNA expression level of TNF-α in the committed cells was significantly lower than that in BMMs. These results suggest that characteristics of the committed cells induced by TRANCE are distinctively different from that of BMMs and osteoclasts.


Journal of Dental Research | 2007

Nitric Oxide in Pulp Cell Growth, Differentiation, and Mineralization

Rika Yasuhara; Tetsuo Suzawa; Yoichi Miyamoto; Xiaogu Wang; Masamichi Takami; Atsushi Yamada; Ryutaro Kamijo

Dental preparation sometimes causes transient congestion, edema, and necrosis of the pulp. We hypothesized that nitric oxide (NO) is involved in the pathophysiological changes in pulp after preparation. The mRNA and protein expression of the inducible isoform of NO synthase (iNOS) was examined in murine pulp after dental preparation. The effects of NO on the proliferation, mineralization, and apoptosis of pulp cells were also studied in vitro. We found that not only iNOS, but also mRNAs for alkaline phosphatase and plasma membrane glycoprotein-1, were expressed in the pulp after preparation. NOC-18, an NO donor, suppressed the proliferation of pulp cells without inducing cell death, whereas it promoted the mineralization of cells cultured in the presence of β-glycerophosphate, ascorbic acid, dexamethasone, and KH2PO4. Under these conditions, NOC-18 induced the apoptosis of pulp cells. These results suggest that NO regulates the growth, apoptosis, and mineralization of pulp cells.


Calcified Tissue International | 2012

BMP2 Differentially Regulates the Expression of Gremlin1 and Gremlin2, the Negative Regulators of BMP Function, During Osteoblast Differentiation

Dai Suzuki; Atsushi Yamada; Ryo Aizawa; Sakie Funato; Takashi Matsumoto; Wataru Suzuki; Masamichi Takami; Yoichi Miyamoto; Tetsuo Suzawa; Matsuo Yamamoto; Kazuyoshi Baba; Ryutaro Kamijo

Bone morphogenetic proteins (BMPs) control the expressions of many genes involved in bone formation. On the basis of our hypothesis that BMP2 stimulation-regulated gene expression plays a critical role in osteoblast differentiation, we performed genome-wide screening of messenger RNA from BMP2-treated and -untreated C2C12 cells using a DNA microarray technique. We found that the expressions of Gremlin1 and Gremlin2, which are known BMP antagonists, were bidirectionally regulated by BMP2. Gremlin1 was down-regulated by BMP2, while Gremlin2 was up-regulated in both time- and dose-dependent manners. Ablation of Gremlin1 or Gremlin2 enhanced osteoblast differentiation induced by BMP2. On the other hand, treatment with recombinant Gremlin1 inhibited BMP2-induced osteoblast differentiation. Furthermore, treatment with Smad4 siRNA and the p38 MAPK inhibitor SB203580 suppressed BMP2-induced Gremlin2 gene expression. The differential regulation of Gremlin1 and Gremlin2 gene expressions by BMP2 may explain the critical function of these genes during osteoblast differentiation.


Journal of Biological Chemistry | 2014

Porphyromonas gingivalis-derived lysine gingipain enhances osteoclast differentiation induced by tumor necrosis factor-α and interleukin-1β but suppresses that by interleukin-17A: importance of proteolytic degradation of osteoprotegerin by lysine gingipain.

Tomohito Akiyama; Yoichi Miyamoto; Kentaro Yoshimura; Atsushi Yamada; Masamichi Takami; Tetsuo Suzawa; Marie Hoshino; Takahisa Imamura; Chie Akiyama; Rika Yasuhara; Kenji Mishima; Toshifumi Maruyama; Chikara Kohda; Kazuo Tanaka; Jan Potempa; Hisataka Yasuda; Kazuyoshi Baba; Ryutaro Kamijo

Background: We previously reported that Kgp, a lysine gingipain, degraded osteoprotegerin, an osteoclastogenesis inhibitory factor, to enhance lipopolysaccharide-induced osteoclastogenesis. Results: Kgp enhanced tumor necrosis factor-α- and interleukin-1β-induced osteoclastogenesis. Conclusion: Kgp degraded osteoprotegerin more efficiently than other cytokines, which might be related to enhancement of osteoclastogenesis by Kgp. Significance: Degradation of osteoprotegerin may be a crucial event in periodontal osteolysis. Periodontitis is a chronic inflammatory disease accompanied by alveolar bone resorption by osteoclasts. Porphyromonas gingivalis, an etiological agent for periodontitis, produces cysteine proteases called gingipains, which are classified based on their cleavage site specificity (i.e. arginine (Rgps) and lysine (Kgps) gingipains). We previously reported that Kgp degraded osteoprotegerin (OPG), an osteoclastogenesis inhibitory factor secreted by osteoblasts, and enhanced osteoclastogenesis induced by various Toll-like receptor (TLR) ligands (Yasuhara, R., Miyamoto, Y., Takami, M., Imamura, T., Potempa, J., Yoshimura, K., and Kamijo, R. (2009) Lysine-specific gingipain promotes lipopolysaccharide- and active-vitamin D3-induced osteoclast differentiation by degrading osteoprotegerin. Biochem. J. 419, 159–166). Osteoclastogenesis is induced not only by TLR ligands but also by proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-17A, in inflammatory conditions, such as periodontitis. Although Kgp augmented osteoclastogenesis induced by TNF-α and IL-1β in co-cultures of mouse osteoblasts and bone marrow cells, it suppressed that induced by IL-17A. In a comparison of proteolytic degradation of these cytokines by Kgp in a cell-free system with that of OPG, TNF-α and IL-1β were less susceptible, whereas IL-17A and OPG were equally susceptible to degradation by Kgp. These results indicate that the enhancing effect of Kgp on cytokine-induced osteoclastogenesis is dependent on the difference in degradation efficiency between each cytokine and OPG. In addition, elucidation of the N-terminal amino acid sequences of OPG fragments revealed that Kgp primarily cleaved OPG in its death domain homologous region, which might prevent dimer formation of OPG required for inhibition of receptor activator of nuclear factor κB ligand. Collectively, our results suggest that degradation of OPG by Kgp is a crucial event in the development of osteoclastogenesis and bone loss in periodontitis.


Biochemical and Biophysical Research Communications | 2011

Expression of POEM, a positive regulator of osteoblast differentiation, is suppressed by TNF-α

Masayuki Tsukasaki; Atsushi Yamada; Dai Suzuki; Ryo Aizawa; Agasa Miyazono; Yoichi Miyamoto; Tetsuo Suzawa; Masamichi Takami; Kentaro Yoshimura; Naoko Morimura; Matsuo Yamamoto; Ryutaro Kamijo

POEM, also known as nephronectin, is an extracellular matrix protein considered to be a positive regulator of osteoblast differentiation. In the present study, we found that tumor necrosis factor-α (TNF-α), a key regulator of bone matrix properties and composition that also inhibits terminal osteoblast differentiation, strongly inhibited POEM expression in the mouse osteoblastic cell line MC3T3-E1. TNF-α-induced down-regulation of POEM gene expression occurred in both time- and dose-dependent manners through the nuclear factor kappa B (NF-κB) pathway. In addition, expressions of marker genes in differentiated osteoblasts were down-regulated by TNF-α in a manner consistent with our findings for POEM, while over-expression of POEM recovered TNF-α-induced inhibition of osteoblast differentiation. These results suggest that TNF-α inhibits POEM expression through the NF-κB signaling pathway and down-regulation of POEM influences the inhibition of osteoblast differentiation by TNF-α.


Journal of Biological Chemistry | 2011

Monocarboxylate transporter-1 is required for cell death in mouse chondrocytic ATDC5 cells exposed to interleukin-1β via late-phase activation of nuclear factor κB and expression of phagocyte-type NADPH-oxidase

Kentaro Yoshimura; Yoichi Miyamoto; Rika Yasuhara; Toshifumi Maruyama; Tomohito Akiyama; Atsushi Yamada; Masamichi Takami; Tetsuo Suzawa; Shoko Tsunawaki; Tetsuhiko Tachikawa; Kazuyoshi Baba; Ryutaro Kamijo

Interleukin-1β (IL-1β) induces cell death in chondrocytes in a nitric oxide (NO)- and reactive oxygen species (ROS)-dependent manner. In this study, increased production of lactate was observed in IL-1β-treated mouse chondrocytic ATDC5 cells prior to the onset of their death. IL-1β-induced cell death in ATDC5 cells was suppressed by introducing an siRNA for monocarboxylate transporter-1 (MCT-1), a lactate transporter distributed in plasma and mitochondrial inner membranes. Mct-1 knockdown also prevented IL-1β-induced expression of phagocyte-type NADPH oxidase (NOX-2), an enzyme specialized for production of ROS, whereas it did not have an effect on inducible NO synthase. Suppression of IL-1β-induced cell death by Nox-2 siRNA indicated that NOX-2 is involved in cell death. Phosphorylation and degradation of inhibitor of κBα (IκBα) from 5 to 20 min after the addition of IL-1β was not affected by Mct-1 siRNA. In addition, IκBα was slightly decreased after 12 h of incubation with IL-1β, and the decrease was prominent after 36 h, whereas activation of p65/RelA was observed from 12 to 48 h after exposure to IL-1β. These changes were not seen in Mct-1-silenced cells. Forced expression of IκBα super repressor as well as treatment with the IκB kinase inhibitor BAY 11-7082 suppressed NOX-2 expression. Furthermore, Mct-1 siRNA lowered the level of ROS generated after 15-h exposure to IL-1β, whereas a ROS scavenger, N-acetylcysteine, suppressed both late phase degradation of IκBα and Nox-2 expression. These results suggest that MCT-1 contributes to NOX-2 expression via late phase activation of NF-κB in a ROS-dependent manner in ATDC5 cells exposed to IL-1β.


Journal of Tissue Engineering and Regenerative Medicine | 2015

Synthetic octacalcium phosphate-enhanced reparative dentine formation via induction of odontoblast differentiation

Xiaogu Wang; Tetsuo Suzawa; Tomohiko Miyauchi; Baohong Zhao; Rika Yasuhara; Takahisa Anada; Masanori Nakamura; Osamu Suzuki; Ryutaro Kamijo

Synthetic octacalcium phosphate (OCP) has been suggested to be a useful biomaterial for the regeneration of hard tissues, including bone. However, it remains unknown whether OCP induces dentine formation by dental pulp. We investigated biomineralization of dental pulp exposed to synthetic OCP in vitro and in vivo. When dental pulp was exposed directly to OCP, rapid formation of reparative dentine (RD) was induced and expression of dentine sialoprotein synthesis was observed in dental pulp adjacent to newly synthesized RD. OCP inhibited the proliferation of rat pulp cells and also promoted their odontoblastic differentiation in vitro, as alkaline phosphatase activity, mineralization of pulp cells and the expression level of dentine sialophosphoprotein were enhanced. Direct contact between OCP and pulp cells is required for OCP to exhibit its effects in vitro. The expression level of Runx2, a transcription factor whose downregulation is closely related to odontoblast differentiation, was downregulated in pulp cells cultured with OCP. Structural changes of OCP during culture were determined by Fourier transform infrared spectroscopy. OCP tended to be converted to carbonate hydroxyapatite after incubation with or without pulp cells, which may be analogous to biological apatite crystals. Taken together, our data suggest that synthetic OCP supports RD formation by dental pulp and downregulation of Runx2 may be involved in that stimulatory activity. Furthermore, OCP–apatite conversion is involved in this stimulatory capacity of OCP. Copyright


Journal of Cellular Physiology | 2010

Carbonic anhydrase II regulates differentiation of ameloblasts via intracellular pH‐dependent JNK signaling pathway

Xiaogu Wang; Tetsuo Suzawa; Hirotada Ohtsuka; Baohong Zhao; Yoichi Miyamoto; Tomohiko Miyauchi; Riko Nishimura; Tomio Inoue; Masanori Nakamura; Kazuyoshi Baba; Ryutaro Kamijo

Differentiation of ameloblasts from undifferentiated epithelial cells is controlled by diverse growth factors, as well as interactions between epithelium and mesenchyme. However, there is a considerable lack of knowledge regarding the precise mechanisms that control ameloblast differentiation and enamel biomineralization. We found that the expression level of carbonic anhydrase II (CAII) is strongly up‐regulated in parallel with differentiation of enamel epithelium tissues, while the enzyme activity of CA was also increased along with differentiation in ameloblast primary cultures. The expression level of amelogenin, a marker of secretory‐stage ameloblasts, was enhanced by ethoxzolamide (EZA), a CA inhibitor, as well as CAII antisense (CAIIAS), whereas the expression of enamel matrix serine proteinase‐1 (EMSP‐1), a marker for maturation‐stage ameloblasts, was suppressed by both. These agents also promoted ameloblast proliferation. In addition, inhibition of ameloblast differentiation by EZA and CAIIAS was confirmed using tooth germ organ cultures. Furthermore, EZA and CAIIAS elevated intracellular pH in ameloblasts, while experimental decreases in intracellular pH abolished the effect of CAIIAS on ameloblasts and triggered the activation of c‐Jun N‐terminal kinase (JNK). SP600125, a JNK inhibitor, abrogated the response of ameloblasts to an experimental decrease in intracellular pH, while the inhibition of JNK also impaired ameloblast differentiation. These results suggest a novel role for CAII during amelogenesis, that is, controlling the differentiation of ameloblasts. Regulation of intracellular pH, followed by activation of the JNK signaling pathway, may be responsible for the effects of CAII on ameloblasts. J. Cell. Physiol. 225: 709–719, 2010.


Biochemical and Biophysical Research Communications | 2015

Localization and osteoblastic differentiation potential of neural crest-derived cells in oral tissues of adult mice

Miki Ono; Tetsuo Suzawa; Masamichi Takami; Gou Yamamoto; Tomohiko Hosono; Atsushi Yamada; Dai Suzuki; Kentaro Yoshimura; Junichi Watahiki; Ryuhei Hayashi; Satoru Arata; Kenji Mishima; Kohji Nishida; Noriko Osumi; Koutaro Maki; Ryutaro Kamijo

In embryos, neural crest cells emerge from the dorsal region of the fusing neural tube and migrate throughout tissues to differentiate into various types of cells including osteoblasts. In adults, subsets of neural crest-derived cells (NCDCs) reside as stem cells and are considered to be useful cell sources for regenerative medicine strategies. Numerous studies have suggested that stem cells with a neural crest origin persist into adulthood, especially those within the mammalian craniofacial compartment. However, their distribution as well as capacity to differentiate into osteoblasts in adults is not fully understood. To analyze the precise distribution and characteristics of NCDCs in adult oral tissues, we utilized an established line of double transgenic (P0-Cre/CAG-CAT-EGFP) mice in which NCDCs express green fluorescent protein (GFP) throughout their life. GFP-positive cells were scattered like islands throughout tissues of the palate, gingiva, tongue, and buccal mucosa in adult mice, with those isolated from the latter shown to form spheres, typical cell clusters composed of stem cells, under low-adherent conditions. Furthermore, GFP-positive cells had markedly increased alkaline phosphatase (a marker enzyme of osteoblast differentiation) activity and mineralization as shown by alizarin red staining, in the presence of bone morphogenetic protein (BMP)-2. These results suggest that NCDCs reside in various adult oral tissues and possess potential to differentiate into osteoblastic cells. NCDCs in adults may be a useful cell source for bone regeneration strategies.

Collaboration


Dive into the Tetsuo Suzawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge