Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tetsuya Hosooka is active.

Publication


Featured researches published by Tetsuya Hosooka.


The EMBO Journal | 2000

SHPS‐1 regulates integrin‐mediated cytoskeletal reorganization and cell motility

Kenjiro Inagaki; Takuji Yamao; Tetsuya Noguchi; Takashi Matozaki; Kaoru Fukunaga; Toshiyuki Takada; Tetsuya Hosooka; Shizuo Akira; Masato Kasuga

The transmembrane glycoprotein SHPS‐1 binds the protein tyrosine phosphatase SHP‐2 and serves as its substrate. Although SHPS‐1 has been implicated in growth factor‐ and cell adhesion‐induced signaling, its biological role has remained unknown. Fibroblasts homozygous for expression of an SHPS‐1 mutant lacking most of the cytoplasmic region of this protein exhibited increased formation of actin stress fibers and focal adhesions. They spread more quickly on fibronectin than did wild‐type cells, but they were defective in subsequent polarized extension and migration. The extent of adhesion‐induced activation of Rho, but not that of Rac, was also markedly reduced in the mutant cells. Activation of the Ras–extracellular signal‐regulated kinase signaling pathway and of c‐Jun N‐terminal kinases by growth factors was either unaffected or enhanced in the mutant fibroblasts. These results demonstrate that SHPS‐1 plays crucial roles in integrin‐mediated cytoskeletal reorganization, cell motility and the regulation of Rho, and that it also negatively modulates growth factor‐induced activation of mitogen‐activated protein kinases.


Cell Metabolism | 2012

PGRN is a Key Adipokine Mediating High Fat Diet-Induced Insulin Resistance and Obesity through IL-6 in Adipose Tissue

Toshiya Matsubara; Ayako Mita; Kohtaro Minami; Tetsuya Hosooka; Sohei Kitazawa; Kenichi Takahashi; Yoshikazu Tamori; Norihide Yokoi; Makoto Watanabe; Ei-ichi Matsuo; Osamu Nishimura; Susumu Seino

Adipose tissue secretes adipokines that mediate insulin resistance, a characteristic feature of obesity and type 2 diabetes. By differential proteome analysis of cellular models of insulin resistance, we identified progranulin (PGRN) as an adipokine induced by TNF-α and dexamethasone. PGRN in blood and adipose tissues was markedly increased in obese mouse models and was normalized with treatment of pioglitazone, an insulin-sensitizing agent. Ablation of PGRN (Grn(-/-)) prevented mice from high fat diet (HFD)-induced insulin resistance, adipocyte hypertrophy, and obesity. Grn deficiency blocked elevation of IL-6, an inflammatory cytokine, induced by HFD in blood and adipose tissues. Insulin resistance induced by chronic administration of PGRN was suppressed by neutralizing IL-6 in vivo. Thus, PGRN is a key adipokine that mediates HFD-induced insulin resistance and obesity through production of IL-6 in adipose tissue, and may be a promising therapeutic target for obesity.


Nature Medicine | 2008

Dok1 mediates high-fat diet–induced adipocyte hypertrophy and obesity through modulation of PPAR-γ phosphorylation

Tetsuya Hosooka; Tetsuya Noguchi; Ko Kotani; Takehiro Nakamura; Hiroshi Sakaue; Hiroshi Inoue; Wataru Ogawa; Kazutoshi Tobimatsu; Kazuo Takazawa; Mashito Sakai; Yasushi Matsuki; Ryuji Hiramatsu; Tomoharu Yasuda; Mitchell A. Lazar; Yuji Yamanashi; Masato Kasuga

Insulin receptor substrate (IRS)-1 and IRS-2 have dominant roles in the action of insulin, but other substrates of the insulin receptor kinase, such as Gab1, c-Cbl, SH2-B and APS, are also of physiological relevance. Although the protein downstream of tyrosine kinases-1 (Dok1) is known to function as a multisite adapter molecule in insulin signaling, its role in energy homeostasis has remained unclear. Here we show that Dok1 regulates adiposity. Expression of Dok1 in white adipose tissue was markedly increased in mice fed a high-fat diet, whereas adipocytes lacking this adapter were smaller and showed a reduced hypertrophic response to this dietary manipulation. Dok1-deficient mice were leaner and showed improved glucose tolerance and insulin sensitivity compared with wild-type mice. Embryonic fibroblasts from Dok1-deficient mice were impaired in adipogenic differentiation, and this defect was accompanied by an increased activity of the protein kinase ERK and a consequent increase in the phosphorylation of peroxisome proliferator–activated receptor (PPAR)-γ on Ser112. Mutation of this negative regulatory site for the transactivation activity of PPAR-γ blocked development of the lean phenotype caused by Dok1 ablation. These results indicate that Dok1 promotes adipocyte hypertrophy by counteracting the inhibitory effect of ERK on PPAR-γ and may thus confer predisposition to diet-induced obesity.


Journal of Clinical Investigation | 2010

Ablation of C/EBPβ alleviates ER stress and pancreatic β cell failure through the GRP78 chaperone in mice

Tomokazu Matsuda; Yoshiaki Kido; Shun-ichiro Asahara; Tsuneyasu Kaisho; Takashi Tanaka; Naoko Hashimoto; Yutaka Shigeyama; Akihiko Takeda; Tae Inoue; Yuki Shibutani; Maki Koyanagi; Tetsuya Hosooka; Michihiro Matsumoto; Hiroshi Inoue; Tohru Uchida; Masato Koike; Yasuo Uchiyama; Shizuo Akira; Masato Kasuga

Pancreatic beta cell failure is thought to underlie the progression from glucose intolerance to overt diabetes, and ER stress is implicated in such beta cell dysfunction. We have now shown that the transcription factor CCAAT/enhancer-binding protein beta (C/EBPbeta) accumulated in the islets of diabetic animal models as a result of ER stress before the onset of hyperglycemia. Transgenic overexpression of C/EBPbeta specifically in beta cells of mice reduced beta cell mass and lowered plasma insulin levels, resulting in the development of diabetes. Conversely, genetic ablation of C/EBPbeta in the beta cells of mouse models of diabetes, including Akita mice, which harbor a heterozygous mutation in Ins2 (Ins2WT/C96Y), and leptin receptor-deficient (Lepr-/-) mice, resulted in an increase in beta cell mass and ameliorated hyperglycemia. The accumulation of C/EBPbeta in pancreatic beta cells reduced the abundance of the molecular chaperone glucose-regulated protein of 78 kDa (GRP78) as a result of suppression of the transactivation activity of the transcription factor ATF6alpha, thereby increasing the vulnerability of these cells to excess ER stress. Our results thus indicate that the accumulation of C/EBPbeta in pancreatic beta cells contributes to beta cell failure in mice by enhancing susceptibility to ER stress.


Diabetes | 2012

Endoplasmic Reticulum Stress Inhibits STAT3-Dependent Suppression of Hepatic Gluconeogenesis via Dephosphorylation and Deacetylation

Kumi Kimura; Tomoko Yamada; Michihiro Matsumoto; Yoshiaki Kido; Tetsuya Hosooka; Shun-ichiro Asahara; Tomokazu Matsuda; Tsuguhito Ota; Hiroshi Watanabe; Yoshimichi Sai; Ken-ichi Miyamoto; Shuichi Kaneko; Masato Kasuga; Hiroshi Inoue

In the liver, signal transducer and activator of transcription 3 (STAT3) plays an important role in the suppression of gluconeogenic enzyme expression. While obesity-associated endoplasmic reticulum (ER) stress has been shown to increase hepatic gluconeogenic enzyme expression, the role of ER stress in STAT3-dependent regulation of such expression is unclear. The current study aimed to elucidate the effect of ER stress on the STAT3-dependent regulation of hepatic gluconeogenic enzyme expression. Genetically obese/diabetic db/db mice and db/db mouse–derived isolated hepatocytes were used as ER stress models. A tyrosine phosphatase inhibitor, a deacetylation inhibitor, and an acetylated mutant of STAT3 were used to examine the effect of ER stress on hepatic STAT3 action. ER stress inhibited STAT3-dependent suppression of gluconeogenic enzyme gene expression by suppressing hepatic Janus kinase (JAK)2 and STAT3 phosphorylation. A tyrosine phosphatase inhibitor restored ER stress–induced suppression of JAK2 phosphorylation but exhibited no improving effect on suppressed STAT3 phosphorylation. STAT3 acetylation is known to correlate with its phosphorylation. ER stress also decreased STAT3 acetylation. An acetylated mutant of STAT3 was resistant to ER stress–induced inhibition of STAT3-phosphorylation and STAT3-dependent suppression of hepatic gluconeogenic enzyme gene expression in vitro and in vivo. Trichostatin A, a histone deacetylase (HDAC) inhibitor, ameliorated ER stress–induced inhibition of STAT3 acetylation and phosphorylation. The current study revealed that ER stress inhibits STAT3-dependent suppression of hepatic gluconeogenic enzymes via JAK2 dephosphorylation and HDAC-dependent STAT3 deacetylation, playing an important role in the increase of hepatic glucose production in obesity and diabetes.


Nature Medicine | 2012

CITED2 links hormonal signaling to PGC-1α acetylation in the regulation of gluconeogenesis

Mashito Sakai; Michihiro Matsumoto; Tomoko Tujimura; Cao Yongheng; Tetsuya Noguchi; Kenjiro Inagaki; Hiroshi Inoue; Tetsuya Hosooka; Kazuo Takazawa; Yoshiaki Kido; Kazuki Yasuda; Ryuji Hiramatsu; Yasushi Matsuki; Masato Kasuga

During fasting, induction of hepatic gluconeogenesis is crucial to ensure proper energy homeostasis. Such induction is dysregulated in type 2 diabetes, resulting in the development of fasting hyperglycemia. Hormonal and nutrient regulation of metabolic adaptation during fasting is mediated predominantly by the transcriptional coactivator peroxisome proliferative activated receptor γ coactivator 1α (PGC-1α) in concert with various other transcriptional regulators. Although CITED2 (CBP- and p300-interacting transactivator with glutamic acid– and aspartic acid–rich COOH-terminal domain 2) interacts with many of these molecules, the role of this protein in the regulation of hepatic gluconeogenesis was previously unknown. Here we show that CITED2 is required for the regulation of hepatic gluconeogenesis through PGC-1α. The abundance of CITED2 was increased in the livers of mice by fasting and in cultured hepatocytes by glucagon-cAMP–protein kinase A (PKA) signaling, and the amount of CITED2 in liver was higher in mice with type 2 diabetes than in non-diabetic mice. CITED2 inhibited the acetylation of PGC-1α by blocking its interaction with the acetyltransferase general control of amino acid synthesis 5–like 2 (GCN5). The consequent downregulation of PGC-1α acetylation resulted in an increase in its transcriptional coactivation activity and an increased expression of gluconeogenic genes. The interaction of CITED2 with GCN5 was disrupted by insulin in a manner that was dependent on phosphoinositide 3-kinase (PI3K)–thymoma viral proto-oncogene (Akt) signaling. Our results show that CITED2 functions as a transducer of glucagon and insulin signaling in the regulation of PGC-1α activity that is associated with the transcriptional control of gluconeogenesis and that this function is mediated through the modulation of GCN5-dependent PGC-1α acetylation. We also found that loss of hepatic CITED2 function suppresses gluconeogenesis in diabetic mice, suggesting it as a therapeutic target for hyperglycemia.


Biochemical and Biophysical Research Communications | 2009

Identification and characterization of an alternative promoter of the human PGC-1α gene

Toyo Yoshioka; Kenjiro Inagaki; Tetsuya Noguchi; Mashito Sakai; Wataru Ogawa; Tetsuya Hosooka; Haruhisa Iguchi; Eijiro Watanabe; Yasushi Matsuki; Ryuji Hiramatsu; Masato Kasuga

The transcriptional regulator peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) controls mitochondrial biogenesis and energy homeostasis. Although physical exercise induces PGC-1alpha expression in muscle, the underlying mechanism of this effect has remained incompletely understood. We recently identified a novel muscle-enriched isoform of PGC-1alpha transcript (designated PGC-1alpha-b) that is derived from a previously unidentified first exon. We have now cloned and characterized the human PGC-1alpha-b promoter. The muscle-specific transcription factors MyoD and MRF4 transactivated this promoter through interaction with a proximal E-box motif. Furthermore, either forced expression of Ca(2+)- and calmodulin-dependent protein kinase IV (CaMKIV), calcineurin A, or the p38 mitogen-activated protein kinase (p38 MAPK) kinase MKK6 or the intracellular accumulation of cAMP activated the PGC-1alpha-b promoter in cultured myoblasts through recruitment of cAMP response element (CRE)-binding protein (CREB) to a putative CRE located downstream of the E-box. Our results thus reveal a potential molecular basis for isoform-specific regulation of PGC-1alpha expression in contracting muscle.


Diabetologia | 2013

Ras-related C3 botulinum toxin substrate 1 (RAC1) regulates glucose-stimulated insulin secretion via modulation of F-actin.

Shun-ichiro Asahara; Yuki Shibutani; Kyoko Teruyama; Hiroyuki Inoue; Yukina Kawada; Hiroaki Etoh; Tomokazu Matsuda; M. Kimura-Koyanagi; Naoko Hashimoto; M. Sakahara; W. Fujimoto; Harumi Takahashi; Shuji Ueda; Tetsuya Hosooka; Takaya Satoh; Hiroshi Inoue; Michihiro Matsumoto; Atsu Aiba; Masato Kasuga; Yoshiaki Kido

Aims/hypothesisThe small G-protein ras-related C3 botulinum toxin substrate 1 (RAC1) plays various roles in mammalian cells, such as in the regulation of cytoskeletal organisation, cell adhesion, migration and morphological changes. The present study examines the effects of RAC1 ablation on pancreatic beta cell function.MethodsIsolated islets from pancreatic beta cell-specific Rac1-knockout (betaRac1−/−) mice and RAC1 knockdown INS-1 insulinoma cells treated with small interfering RNA were used to investigate insulin secretion and cytoskeletal organisation in pancreatic beta cells.ResultsBetaRac1−/− mice showed decreased glucose-stimulated insulin secretion, while there were no apparent differences in islet morphology. Isolated islets from the mice had blunted insulin secretion in response to high glucose levels. In RAC1 knockdown INS-1 cells, insulin secretion was also decreased in response to high glucose levels, consistent with the phenotype of betaRac1−/− mice. Even under high glucose levels, RAC1 knockdown INS-1 cells remained intact with F-actin, which inhibits the recruitment of the insulin granules, resulting in an inhibition of insulin secretion.Conclusions/interpretationIn RAC1-deficient pancreatic beta cells, F-actin acts as a barrier for insulin granules and reduces glucose-stimulated insulin secretion.


Molecular and Cellular Biology | 2001

Inhibition of the Motility and Growth of B16F10 Mouse Melanoma Cells by Dominant Negative Mutants of Dok-1

Tetsuya Hosooka; Tetsuya Noguchi; Hiroshi Nagai; Tatsuya Horikawa; Takashi Matozaki; Masamitsu Ichihashi; Masato Kasuga

ABSTRACT Dok-1 (p62Dok) is a multiple-site docking protein that acts downstream of receptor and nonreceptor tyrosine kinases. Although it has been proposed to contribute to the control of cell growth and migration through association with the Ras GTPase-activating protein and the adapter protein Nck, the role of Dok-1 remains largely unknown. The functions of Dok-1 have now been investigated by the generation of two different COOH-terminal truncation mutants of this protein: one (DokPH+PTB) containing the pleckstrin homology and phosphotyrosine-binding domains, and the other (DokPH) composed only of the pleckstrin homology domain. Both of these mutant proteins were shown to act in a dominant negative manner. Overexpression of each of the mutants in highly metastatic B16F10 mouse melanoma cells thus both inhibited the tyrosine phosphorylation of endogenous Dok-1 induced by cell adhesion as well as reduced the association of the endogenous protein with cellular membranes and the cytoskeleton. Overexpression of DokPH+PTB in these cells also markedly reduced both the rates of cell spreading, migration, and growth as well as the extent of Ras activation. The effects of DokPH on these processes were less pronounced than were those of DokPH+PTB, indicating the importance of the phosphotyrosine-binding domain. These results suggest that at least in B16F10 cells, Dok-1 positively regulates not only cell spreading and migration but also cell growth and Ras activity.


FEBS Journal | 2014

A critical role of the small GTPase Rac1 in Akt2‐mediated GLUT4 translocation in mouse skeletal muscle

Nobuyuki Takenaka; Rumi Izawa; Junyuan Wu; Kaho Kitagawa; Yuma Nihata; Tetsuya Hosooka; Tetsuya Noguchi; Wataru Ogawa; Atsu Aiba; Takaya Satoh

Insulin promotes glucose uptake in skeletal muscle by inducing the translocation of the glucose transporter GLUT4 to the plasma membrane. The serine/threonine kinase Akt2 has been implicated as a key regulator of this insulin action. However, the mechanisms whereby Akt2 regulates multiple steps of GLUT4 translocation remain incompletely understood. Recently, the small GTPase Rac1 has been identified as a skeletal muscle‐specific regulator of insulin‐stimulated glucose uptake. Here, we show that Rac1 is a critical downstream component of the Akt2 pathway in mouse skeletal muscle as well as cultured myocytes. GLUT4 translocation induced by constitutively activated Akt2 was totally dependent on the expression of Rac1 in L6 myocytes. Moreover, we observed the activation of Rac1 when constitutively activated Akt2 was ectopically expressed. Constitutively activated Akt2‐triggered Rac1 activation was diminished by knockdown of FLJ00068, a guanine nucleotide exchange factor for Rac1. Knockdown of Akt2, on the other hand, markedly reduced Rac1 activation by a constitutively activated mutant of phosphoinositide 3–kinase. In mouse skeletal muscle, constitutively activated mutants of Akt2 and phosphoinositide 3‐kinase, when ectopically expressed, induced GLUT4 translocation. Muscle‐specific rac1 knockout markedly diminished Akt2‐ or phosphoinositide 3‐kinase‐induced GLUT4 translocation, highlighting a crucial role of Rac1 downstream of Akt2. Taken together, these results strongly suggest a novel regulatory link between Akt2 and Rac1 in insulin‐dependent signal transduction leading to glucose uptake in skeletal muscle.

Collaboration


Dive into the Tetsuya Hosooka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yasushi Matsuki

Dainippon Sumitomo Pharma Co.

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge