Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tetsuya Kitaguchi is active.

Publication


Featured researches published by Tetsuya Kitaguchi.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Illuminating cell-cycle progression in the developing zebrafish embryo

Mayu Sugiyama; Asako Sakaue-Sawano; Tadahiro Iimura; Kiyoko Fukami; Tetsuya Kitaguchi; Koichi Kawakami; Hitoshi Okamoto; Shin-ichi Higashijima; Atsushi Miyawaki

By exploiting the cell-cycle-dependent proteolysis of two ubiquitination oscillators, human Cdt1 and geminin, which are the direct substrates of SCFSkp2 and APCCdh1 complexes, respectively, Fucci technique labels mammalian cell nuclei in G1 and S/G2/M phases with different colors. Transgenic mice expressing these G1 and S/G2/M markers offer a powerful means to investigate the coordination of the cell cycle with morphogenetic processes. We attempted to introduce these markers into zebrafish embryos to take advantage of their favorable optical properties. However, although the fundamental mechanisms for cell-cycle control appear to be well conserved among species, the G1 marker based on the SCFSkp2-mediated degradation of human Cdt1 did not work in fish cells, probably because the marker was not ubiquitinated properly by a fish E3 ligase complex. We describe here the generation of a Fucci derivative using zebrafish homologs of Cdt1 and geminin, which provides sweeping views of cell proliferation in whole fish embryos. Remarkably, we discovered two anterior-to-posterior waves of cell-cycle transitions, G1/S and M/G1, in the differentiating notochord. Our study demonstrates the effectiveness of using the Cul4Ddb1-mediated Cdt1 degradation pathway common to all metazoans for the development of a G1 marker that works in the nonmammalian animal model.


Nature | 2013

Visualization of an endogenous retinoic acid gradient across embryonic development

Satoshi Shimozono; Tadahiro Iimura; Tetsuya Kitaguchi; Shin-ichi Higashijima; Atsushi Miyawaki

In vertebrate development, the body plan is determined by primordial morphogen gradients that suffuse the embryo. Retinoic acid (RA) is an important morphogen involved in patterning the anterior–posterior axis of structures, including the hindbrain and paraxial mesoderm. RA diffuses over long distances, and its activity is spatially restricted by synthesizing and degrading enzymes. However, gradients of endogenous morphogens in live embryos have not been directly observed; indeed, their existence, distribution and requirement for correct patterning remain controversial. Here we report a family of genetically encoded indicators for RA that we have termed GEPRAs (genetically encoded probes for RA). Using the principle of fluorescence resonance energy transfer we engineered the ligand-binding domains of RA receptors to incorporate cyan-emitting and yellow-emitting fluorescent proteins as fluorescence resonance energy transfer donor and acceptor, respectively, for the reliable detection of ambient free RA. We created three GEPRAs with different affinities for RA, enabling the quantitative measurement of physiological RA concentrations. Live imaging of zebrafish embryos at the gastrula and somitogenesis stages revealed a linear concentration gradient of endogenous RA in a two-tailed source–sink arrangement across the embryo. Modelling of the observed linear RA gradient suggests that the rate of RA diffusion exceeds the spatiotemporal dynamics of embryogenesis, resulting in stability to perturbation. Furthermore, we used GEPRAs in combination with genetic and pharmacological perturbations to resolve competing hypotheses on the structure of the RA gradient during hindbrain formation and somitogenesis. Live imaging of endogenous concentration gradients across embryonic development will allow the precise assignment of molecular mechanisms to developmental dynamics and will accelerate the application of approaches based on morphogen gradients to tissue engineering and regenerative medicine.


Journal of Biological Chemistry | 2013

The G protein-coupled receptor family C group 6 subtype A (GPRC6A) receptor is involved in amino acid-induced glucagon-like peptide-1 secretion from GLUTag cells.

Manami Oya; Tetsuya Kitaguchi; Ramona Pais; Frank Reimann; Fiona M. Gribble; Takashi Tsuboi

Background: The molecular mechanisms underlying GLP-1 secretion induced by amino acids from intestinal L cells are not fully understood. Results: The l-amino acid-sensing GPRC6A receptor is expressed in the clonal L cell GLUTag. Activation of GPRC6A by l-ornithine evoked GLP-1 secretion. Conclusion: GLUTag cells respond to amino acids via the GPRC6A receptor. Significance: A new pathway for GLP-1 secretion induced by amino acids in GLUTag cells was identified. Although amino acids are dietary nutrients that evoke the secretion of glucagon-like peptide 1 (GLP-1) from intestinal L cells, the precise molecular mechanism(s) by which amino acids regulate GLP-1 secretion from intestinal L cells remains unknown. Here, we show that the G protein-coupled receptor (GPCR), family C group 6 subtype A (GPRC6A), is involved in amino acid-induced GLP-1 secretion from the intestinal L cell line GLUTag. Application of l-ornithine caused an increase in intracellular Ca2+ concentration ([Ca2+]i) in GLUTag cells. Application of a GPRC6A receptor antagonist, a phospholipase C inhibitor, or an IP3 receptor antagonist significantly suppressed the l-ornithine-induced [Ca2+]i increase. We found that the increase in [Ca2+]i stimulated by l-ornithine correlated with GLP-1 secretion and that l-ornithine stimulation increased exocytosis in a dose-dependent manner. Furthermore, depletion of endogenous GPRC6A by a specific small interfering RNA (siRNA) inhibited the l-ornithine-induced [Ca2+]i increase and GLP-1 secretion. Taken together, these findings suggest that the GPRC6A receptor functions as an amino acid sensor in GLUTag cells that promotes GLP-1 secretion.


Biochemical Journal | 2013

Extracellular calcium influx activates adenylate cyclase 1 and potentiates insulin secretion in MIN6 cells

Tetsuya Kitaguchi; Manami Oya; Yoshiko Wada; Takashi Tsuboi; Atsushi Miyawaki

Intracellular cAMP and Ca(2+) are important second messengers that regulate insulin secretion in pancreatic β-cells; however, the molecular mechanism underlying their mutual interaction for exocytosis is not fully understood. In the present study, we investigated the interplay between intracellular cAMP and Ca(2+) concentrations ([cAMP](i) and [Ca(2+)](i) respectively) in the pancreatic β-cell line MIN6 using total internal reflection fluorescence microscopy. For measuring [cAMP](i), we developed a genetically encoded yellow fluorescent biosensor for cAMP [Flamindo (fluorescent cAMP indicator)], which changes fluorescence intensity with cAMP binding. Application of high-KCl or glucose to MIN6 cells induced the elevation of [cAMP](i) and exocytosis. Furthermore, application of an L-type Ca(2+) channel agonist or ionomycin to induce extracellular Ca(2+) influx evoked the elevation of [cAMP](i), whereas application of carbachol or thapsigargin, which mobilize Ca(2+) from internal stores, did not evoke the elevation of [cAMP](i). We performed RT (reverse transcription)-PCR analysis and found that Ca(2+)-sensitive Adcy1 (adenylate cyclase 1) was expressed in MIN6 cells. Knockdown of endogenous ADCY1 by small interference RNA significantly suppressed glucose-induced exocytosis and the elevation of both [cAMP](i) and [Ca(2+)](i). Taken together, the findings of the present study demonstrate that ADCY1 plays an important role in the control of pancreatic β-cell cAMP homoeostasis and insulin secretion.


Biochemical and Biophysical Research Communications | 2013

Vesicular nucleotide transporter is involved in ATP storage of secretory lysosomes in astrocytes.

Manami Oya; Tetsuya Kitaguchi; Yu Yanagihara; Rika Numano; Masaki Kakeyama; Kazuya Ikematsu; Takashi Tsuboi

Recent studies have suggested that astrocytes release gliotransmitters (i.e., ATP, L-glutamate, D-serine, and peptide hormones) and participate actively in synaptic functioning. Although ATP release from astrocytes modulates the activity of neurons, the mechanisms regulating the ATP release from astrocytes and the source of ATP in astrocytes are not well understood. Recently a vesicular nucleotide transporter (VNUT)/solute carrier family 17, member 9 (SLC17A9) has been identified as a mediator of the active accumulation of ATP into vesicles. Here we show by immunocytochemical analysis under confocal microscope and live cell imaging under total internal reflection fluorescence microscope that lysosome-associated VNUT is responsible for ATP release in astrocytes. VNUT was expressed in both primary cultured cortical astrocytes and glioma cell line C6 cells, and mainly localized on lysosome in the cells. We found that VNUT-associated secretory lysosomes do not fully collapse into the plasma membrane after lysosomal exocytosis. We also found that inhibition of VNUT function by Evans Blue decreased ATP uptake into secretory lysosomes. Depletion and inhibition of endogenous VNUT by small interference RNA and Evans Blue, respectively decreased the amount of ATP release from the cells, whereas overexpression of VNUT increased it. Taken together, these findings indicate that the participation of VNUT in ATP storage in secretory lysosomes during lysosomal exocytosis of ATP from astrocytes.


Molecular Biology of the Cell | 2010

Age-dependent Preferential Dense-Core Vesicle Exocytosis in Neuroendocrine Cells Revealed by Newly Developed Monomeric Fluorescent Timer Protein

Takashi Tsuboi; Tetsuya Kitaguchi; Satoshi Karasawa; Mitsunori Fukuda; Atsushi Miyawaki

Using a newly developed protein-based fluorescent timer, mK-GO, which changes color with a predictable time course, we show that Rab27A effectors, rabphilin and Slp4-a, regulate age-dependent exocytosis of secretory vesicles in PC12 cells, and suggest that coordinate functions of the effectors are required for regulated secretory pathway.


European Journal of Immunology | 2011

Release of TNF-α from macrophages is mediated by small GTPase Rab37

Ryoichi Mori; Kazuya Ikematsu; Tetsuya Kitaguchi; Sang E. Kim; Momoko Okamoto; Takuya Chiba; Atsushi Miyawaki; Isao Shimokawa; Takashi Tsuboi

Activated macrophages at wound sites release many cytokines which positively affect skin wound healing. However, the molecular mechanisms controlling cytokine secretion from macrophages have not been elucidated. In the present study, we performed an RT‐PCR analysis and found that 19 small GTPase Rab isoforms were expressed at skin wound sites, with six of them (i.e. Rab3B, Rab27B, Rab30, Rab33A, Rab37, and Rab40C) being upregulated during the inflammation and proliferation/migration phase of skin repair. We also found that gene expression of Rab37 in murine primary and RAW264.7 macrophages was significantly induced after stimulation with LPS. Overexpression of wild type and constitutively active Rab37 in RAW264.7 cells significantly increased TNF‐α secretion, whereas knockdown of Rab37 by siRNA significantly decreased it. We also identified 29 putative Rab37‐interacting proteins, including the membrane fusion regulating Munc13‐1, using liquid chromatography/linear ion trap mass spectrometry (LC‐MS/MS). Immunocytochemical analysis further revealed that TNF‐α‐containing vesicles were colocalized with both Rab37 and Munc13‐1 in activated macrophages. Knockdown of Munc13‐1 by siRNA significantly decreased TNF‐α secretion. Taken together, these findings demonstrate that Rab37 interacts with Munc13‐1 to control TNF‐α secretion from activated macrophages.


PLOS ONE | 2014

Genetically-encoded yellow fluorescent cAMP indicator with an expanded dynamic range for dual-color imaging.

Haruki Odaka; Satoshi Arai; Takafumi Inoue; Tetsuya Kitaguchi

Cyclic AMP is a ubiquitous second messenger, which mediates many cellular responses mainly initiated by activation of cell surface receptors. Various Förster resonance energy transfer-based ratiometric cAMP indicators have been created for monitoring the spatial and temporal dynamics of cAMP at the single-cell level. However, single fluorescent protein-based cAMP indicators have been poorly developed, with improvement required for dynamic range and brightness. Based on our previous yellow fluorescent protein-based cAMP indicator, Flamindo, we developed an improved yellow fluorescent cAMP indicator named Flamindo2. Flamindo2 has a 2-fold expanded dynamic range and 8-fold increased brightness compared with Flamindo by optimization of linker peptides in the vicinity of the chromophore. We found that fluorescence intensity of Flamindo2 was decreased to 25% in response to cAMP. Live-cell cAMP imaging of the cytosol and nucleus in COS7 cells using Flamindo2 and nlsFlamindo2, respectively, showed that forskolin elevated cAMP levels in each compartment with different kinetics. Furthermore, dual-color imaging of cAMP and Ca2+ with Flamindo2 and a red fluorescent Ca2+ indicator, R-GECO, showed that cAMP and Ca2+ elevation were induced by noradrenaline in single HeLa cells. Our study shows that Flamindo2, which is feasible for multi-color imaging with other intracellular signaling molecules, is useful and is an alternative tool for live-cell imaging of intracellular cAMP dynamics.


Scientific Reports | 2016

Wide and high resolution tension measurement using FRET in embryo

Satoshi Yamashita; Takashi Tsuboi; Nanako Ishinabe; Tetsuya Kitaguchi; Tatsuo Michiue

During embryonic development, physical force plays an important role in morphogenesis and differentiation. Stretch sensitive fluorescence resonance energy transfer (FRET) has the potential to provide non-invasive tension measurements inside living tissue. In this study, we introduced a FRET-based actinin tension sensor into Xenopus laevis embryos and demonstrated that this sensor captures variation of tension across differentiating ectoderm. The actinin tension sensor, containing mCherry and EGFP connected by spider silk protein, was validated in human embryonic kidney (HEK) cells and embryos. It co-localized with actin filaments and changed FRET efficiencies in response to actin filament destruction, myosin deactivation, and osmotic perturbation. Time-lapse FRET analysis showed that the prospective neural ectoderm bears higher tension than the epidermal ectoderm during gastrulation and neurulation, and cells morphogenetic behavior correlated with the tension difference. These data confirmed that the sensor enables us to measure tension across tissues concurrently and with high resolution.


Biochemical and Biophysical Research Communications | 2012

The small GTPase Cdc42 modulates the number of exocytosis-competent dense-core vesicles in PC12 cells

Mai Sato; Tetsuya Kitaguchi; Rika Numano; Kazuya Ikematsu; Masaki Kakeyama; Masayuki Murata; Ken Sato; Takashi Tsuboi

Although the small GTPase Rho family Cdc42 has been shown to facilitate exocytosis through increasing the amount of hormones released, the precise mechanisms regulating the quantity of hormones released on exocytosis are not well understood. Here we show by live cell imaging analysis under TIRF microscope and immunocytochemical analysis under confocal microscope that Cdc42 modulated the number of fusion events and the number of dense-core vesicles produced in the cells. Overexpression of a wild-type or constitutively-active form of Cdc42 strongly facilitated high-KCl-induced exocytosis from the newly recruited plasma membrane vesicles in PC12 cells. By contrast, a dominant-negative form of Cdc42 inhibited exocytosis from both the newly recruited and previously docked plasma membrane vesicles. The number of intracellular dense-core vesicles was increased by the overexpression of both a wild-type and constitutively-active form of Cdc42. Consistently, activation of Cdc42 by overexpression of Tuba, a Golgi-associated guanine nucleotide exchange factor for Cdc42 increased the number of intracellular dense-core vesicles, whereas inhibition of Cdc42 by overexpression of the Cdc42/Rac interactive binding domain of neuronal Wiskott-Aldrich syndrome protein decreased the number of them. These findings suggest that Cdc42 facilitates exocytosis by modulating both the number of exocytosis-competent dense-core vesicles and the production of dense-core vesicles in PC12 cells.

Collaboration


Dive into the Tetsuya Kitaguchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Atsushi Miyawaki

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge