Th. Rivinius
European Southern Observatory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Th. Rivinius.
Astronomy and Astrophysics | 2009
Alex C. Carciofi; Atsuo T. Okazaki; J.-B. Le Bouquin; S. Štefl; Th. Rivinius; Dietrich Baade; J. E. Bjorkman; C. A. Hummel
Context. About 2/3 of the Be stars present the so-called V/R variations, a phenomenon characterized by the quasi-cyclic variation in the ratio between the violet and red emission peaks of the H i emission lines. These variations are generally explained by global oscillations in the circumstellar disk forming a one-armed spiral density pattern that precesses around the star with a period of a few years. Aims. This paper presents self-consistent models of polarimetric, photometric, spectrophotometric, and interferometric observations of the classical Be star ζ Tauri. The primary goal is to conduct a critical quantitative test of the global oscillation scenario. Methods. Detailed three-dimensional, NLTE radiative transfer calculations were carried out using the radiative transfer code HDUST. The most up-to-date research on Be stars was used as input for the code in order to include a physically realistic description for the central star and the circumstellar disk. The model adopts a rotationally deformed, gravity darkened central star, surrounded by a disk whose unperturbed state is given by a steady-state viscous decretion disk model. It is further assumed that this disk is in vertical hydrostatic equilibrium. Results. By adopting a viscous decretion disk model for ζ Tauri and a rigorous solution of the radiative transfer, a very good fit of the time-average properties of the disk was obtained. This provides strong theoretical evidence that the viscous decretion disk model is the mechanism responsible for disk formation. The global oscillation model successfully fitted spatially resolved VLTI/AMBER observations and the temporal V/R variations in the Hα and Brγ lines. This result convincingly demonstrates that the oscillation pattern in the disk is a one-armed spiral. Possible model shortcomings, as well as suggestions for future improvements, are also discussed.
Astronomy and Astrophysics | 2003
Th. Rivinius; Dietrich Baade; S. Štefl
Based on more than 3000 high-resolution echelle spectra of 27 early-type Be stars, taken over six years, it is shown that the short-term periodic line profile variability of these objects is due to non-radial pulsation. The appearance of the line profile variability depends mostly on the projected rotational velocity v sini and thus, since all Be stars rotate rapidly, on the inclination i. The observed variability of the investigated stars is described, and for some of them line profile variability periods are given for the first time. For two of the investigated stars the line profile variability was successfully modeled as non-radial pulsation with � = m =+ 2 already in previous works. Since Be stars with similarly low v sini share the same variability properties, these are in general explainable under the same model assumptions. The line profile variability of stars with higher v sini is different from the one observed in low v sini stars, but can be reproduced by the same model, if only the model inclination is modified to more equatorial values. Only for a few stars with periodic line profile variability the � = m = 2 non-radial pulsation mode is not able to provide a satisfying explanation. These objects might pulsate in different modes (e.g. tesseral ones, � |m|). Almost all stars in the sample show traces of outburst-like variability, pointing to an ephemeral nature of the mass-loss phenomenon responsible for the formation of the circumstellar disk of early-type Be stars, rather than a steady star-to-disk mass transfer. In addition to the variability due to non-radial pulsation present in most stars, several objects were found to show other periods residing in the immediate circumstellar environment. The presence of these secondary periods is enhanced in the outburst phases. Short-lived aperiodic phenomena were clearly seen in two stars. But, given the unfavourable sampling of our database to follow rapid variability of transient nature, they might be more common. Only in two out of 27 stars short-term spectroscopic variability was not detected at all.
Monthly Notices of the Royal Astronomical Society | 2016
G. A. Wade; C. Neiner; E. Alecian; J. Grunhut; V. Petit; B. de Batz; David A. Bohlender; David H. Cohen; Huib F. Henrichs; Oleg Kochukhov; J. D. Landstreet; Nadine Manset; F. Martins; S. Mathis; M. E. Oksala; Stanley P. Owocki; Th. Rivinius; M. Shultz; J. O. Sundqvist; R. H. D. Townsend; Asif ud-Doula; J.-C. Bouret; J. Braithwaite; Maryline Briquet; Alex C. Carciofi; A. David-Uraz; C. P. Folsom; A. W. Fullerton; B. Leroy; W. L. F. Marcolino
The Magnetism in Massive Stars (MiMeS) survey represents a highprecision systematic search for magnetic fields in hot, massive OB stars. To date, MiMeS Large Programs (ESPaDOnS@CFHT, Narval@TBL, [email protected]) and associated PI programs (FORS@VLT) have yielded nearly 1200 circular spectropolarimetric observations of over 350 OB stars. Within this sample, 20 stars are detected as magnetic. Follow-up observations of new detections reveals (i) a large diversity of magnetic properties, (ii) ubiquitous evidence for magnetic wind confinement in optical spectra of all magnetic O stars, and (iii) the presence of strong, organized magnetic fields in all known Galactic Of?p stars, and iv) a complete absence of magnetic fields in classical Be stars.
Astronomy and Astrophysics | 2001
O. Stahl; I. Jankovics; Jozsef Kovacs; B. Wolf; Werner Schmutz; A. Kaufer; Th. Rivinius; Th. Szeifert
We have extensively monitored the Luminous Blue Variable AG Car (HD 94910) spectroscopically. Our data cover the years 1989 to 1999. In this period, the star underwent almost a full S Dor cycle from visual minimum to maximum and back. Over several seasons, up to four months of almost daily spectra are available. Our data cover most of the visual spectral range with a high spectral resolution (= 20 000). This allows us to investigate the variability in many lines on time scales from days to years. The strongest variability occurs on a time scale of years. Qualitatively, the variations can be understood as changes of the eective temperature and radius, which are in phase with the optical light curve. Quantitatively, there are several interesting deviations from this behaviour, however. The Balmer lines show P Cygni proles and have their maximum strength (both in equivalent width and line flux) after the peak of the optical light curve, at the descending branch of the light curve. The line-width during maximum phase is smaller than during minimum, but it has a local maximum close to the peak of the visual light curve. We derive mass-loss rates over the cycle from the H line and nd the highest mass loss rates (log _ M=(M yr 1 ) 3:8, about a factor of ve higher than in the minimum, where we nd log _ M=(M yr 1 ) 4:5) after the visual maximum. Line-splitting is very commonly observed, especially on the rise to maximum and on the descending branch from maximum. The components are very long-lived (years) and are probably unrelated to similar-looking line-splitting events in normal supergiants. Small apparent accelerations of the components are observed. The change in radial velocity could be due to successive narrowing of the components, with the absorption disappearing at small expansion velocities rst. In general, the line- splitting is more likely the result of missing absorption at intermediate velocities than of excess absorption at the velocities of the components. The Hei lines and other lines which form deep in the atmosphere show the most peculiar variations. The Hei lines show a central absorption with variable blue- and red-shifted emission components. Due to the variations of the emission components, the Hei lines can change their line prole from a normal P Cyg prole to an inverse P Cyg-prole or double-peak emission. In addition, very broad (1500 km s 1 ) emission wings are seen at the strongest Hei lines of AG Car. At some phases, a blue-shifted absorption is also present. The central absorption of the Hei lines is blue-shifted before and red-shifted after maximum. Possibly, we directly see the expansion and contraction of the photosphere. If this explanation is correct, the velocity of the continuum-forming layer is not dominated by expansion but is only slightly oscillating around the systemic velocity.
Astronomy and Astrophysics | 2009
S. Štefl; Th. Rivinius; Alex C. Carciofi; J.-B. Le Bouquin; Dietrich Baade; K. S. Bjorkman; E.N. Hesselbach; C. A. Hummel; Atsuo T. Okazaki; E. Pollmann; Fredrik T. Rantakyrö; John P. Wisniewski
Context. Emission lines formed in decretion disks of Be stars often undergo long-term cyclic variations, especially in the violet-to-red (V/R) ratio of their primary components. The underlying structural and dynamical variations of the disks are only partly understood. From observations of the bright Be-shell star ζ Tau, the possibly broadest and longest data set illustrating the prototype of this behaviour was compiled from our own and archival observations. It comprises optical and infrared spectra, broad-band polarimetry, and interferometric observations. Aims. The dense, long-time monitoring permits a better separation of repetitive and ephemeral variations. The broad wavelength coverage includes lines formed under different physical conditions, i.e. different locations in the disk, so that the dynamics can be probed throughout much of the disk. Polarimetry and interferometry constrain the spatial structure. All together, the objective is a better understand the dynamics and life cycle of decretion disks. Methods. Standard methods of data acquisition, reduction, and analysis were applied. Results. From 3 V/R cycles between 1997 and 2008, a mean cycle length in Hα of 1400–1430 days was derived. After each minimum in V/R, the shell absorption weakens and splits into two components, leading to 3 emission peaks. This phase may make the strongest contribution to the variability in cycle length. There is no obvious connection between the V/R cycle and the 133-day orbital period of the not otherwise detected companion. V/R curves of different lines are shifted in phase. Lines formed on average closer to the central star are ahead of the others. The shell absorption lines fall into 2 categories differing in line width, ionization/excitation potential, and variability of the equivalent width. They seem to form in separate regions of the disk, probably crossing the line of sight at different times. The interferometry has resolved the continuum and the line emission in Brγ and HeI 2.06. The phasing of the Brγ emission shows that the photocenter of the line-emitting region lies within the plane of the disk but is offset from the continuum source. The plane of the disk is constant throughout the observed V/R cycles. The observations lay the foundation for the fully self-consistent, one-armed, disk-oscillation model developed in Paper II.
Astronomy and Astrophysics | 2011
O. Chesneau; A. Meilland; D. P. K. Banerjee; J.-B. Le Bouquin; Harold A. McAlister; F. Millour; S. T. Ridgway; A. Spang; Theo A. ten Brummelaar; Markus Wittkowski; N. M. Ashok; M. Benisty; Jean-Philippe Berger; Tabetha S. Boyajian; Ch. Farrington; P. J. Goldfinger; A. Mérand; N. Nardetto; Romain G. Petrov; Th. Rivinius; Gail H. Schaefer; Y. Touhami; G. Zins
We report on near-IR interferometric observations of the outburst of the recurrent nova T Pyx. We obtained near-IR observations of T Pyx at dates ranging from t=2.37d to t=48.2d after the outburst, with the CLASSIC recombiner, located at the CHARA array, and with the PIONIER and AMBER recombiners, located at the VLTI array. These data are supplemented with near-IR photometry and spectra obtained at Mount Abu, India. Slow expansion velocities were measured (<300km/s) before t=20d (assuming D=3.5kpc). From t=28d on, the AMBER and PIONIER continuum visibilities (K and H band, respectively) are best simulated with a two component model consisting of an unresolved source plus an extended source whose expansion velocity onto the sky plane is lower than 700km/s. The expansion of the Brgamma line forming region, as inferred at t=28d and t=35d is slightly larger, implying velocities in the range 500-800km/s, still strikingly lower than the velocities of 1300-1600km/s inferred from the Doppler width of the line. Moreover, a remarkable pattern was observed in the Brgamma differential phases. A semi-quantitative model using a bipolar flow with a contrast of 2 between the pole and equator velocities, an inclination of i=15° and a position angle P.A.=110° provides a good match to the AMBER observables (spectra, differential visibilities and phases). At t=48d, a PIONIER dataset confirms the two component nature of the H band emission, consisting of an unresolved stellar source and an extended region whose appearance is circular and symmetric within error bars.These observations are most simply interpreted within the frame of a bipolar model, oriented nearly face-on. This finding has profound implications for the interpretation of past, current and future observations of the expanding nebula.
The Astrophysical Journal | 2008
Douglas R. Gies; Sergio B. Dieterich; N. D. Richardson; Adric R. Riedel; B. L. Team; Harold A. McAlister; William G. Bagnuolo; Erika D. Grundstrom; S. Štefl; Th. Rivinius; Dietrich Baade
We present a radial velocity study of the rapidly rotating B star Regulus that indicates the star is a single-lined spectroscopic binary. The orbital period (40.11 days) and probable semimajor axis (0.35 AU) are large enough that the system is not interacting at present. However, the mass function suggests that the secondary has a low mass (M2 > 0.30 M☉), and we argue that the companion may be a white dwarf. Such a star would be the remnant of a former mass donor that was the source of the large spin angular momentum of Regulus itself.
Monthly Notices of the Royal Astronomical Society | 2012
J. Grunhut; G. A. Wade; Jon O. Sundqvist; Asif ud-Doula; Coralie Neiner; Richard Ignace; W. L. F. Marcolino; Th. Rivinius; A. W. Fullerton; L. Kaper; B. Mauclaire; C. Buil; T. Garrel; J. Ribeiro; S. Ubaud
The O9IV star HD 57682, discovered to be magnetic within the context of the Magnetism in Massive Stars (MiMeS) survey in 2009, is one of only eight convincingly detected magnetic O-type stars. Among this select group, it stands out due to its sharp-lined photospheric spectrum. Since its discovery, the MiMeS Collaboration has continued to obtain spectroscopic and magnetic observations in order to refine our knowledge of its magnetic field strength and geometry, rotational period and spectral properties and variability. In this paper we report new Echelle SpectroPolarimetric Device for the Observation of Stars (ESPaDOnS) spectropolarimetric observations of HD 57682, which are combined with previously published ESPaDOnS data and archival Hα spectroscopy. This data set is used to determine the rotational period (63.5708 ± 0.0057 d), refine the longitudinal magnetic field variation and magnetic geometry (dipole surface field strength of 880 ± 50 G and magnetic obliquity of 79° ± 4° as measured from the magnetic longitudinal field variations, assuming an inclination of 60°) and examine the phase variation of various lines. In particular, we demonstrate that the Hα equivalent width undergoes a double-wave variation during a single rotation of the star, consistent with the derived magnetic geometry. We group the variable lines into two classes: those that, like Hα, exhibit non-sinusoidal variability, often with multiple maxima during the rotation cycle, and those that vary essentially sinusoidally. Based on our modelling of the Hα emission, we show that the variability is consistent with emission being generated from an optically thick, flattened distribution of magnetically confined plasma that is roughly distributed about the magnetic equator. Finally, we discuss our findings in the magnetospheric framework proposed in our earlier study.
Monthly Notices of the Royal Astronomical Society | 2010
Th. Rivinius; Th. Szeifert; L. Barrera; R. H. D. Townsend; S. Štefl; Dietrich Baade
The B2Vn star HR 7355 is found to be a He-rich magnetic star. Spectropolarimetric data were obtained with FORS1 at UT2 on Paranal Observatory to measure the disc-averaged longitudinal magnetic field at various phases of the presumed 0.52 d cycle. A variable magnetic field with strengths betweenB z �=− 2200 and +3200 G was found, with confidence limits of 100 to 130 G. The field topology is that of an oblique dipole, while the star itself is seen about equator-on. In the intensity spectra, the He I lines show the typical equivalent width (EW) variability of He-strong stars, usually attributed to surface abundance spots. The amplitudes of the EW variability of the He I lines are extraordinarily strong compared to other cases. These results not only put HR 7355 unambiguously among the early-type magnetic stars, but confirm its outstanding nature: with v sin i = 320 km s −1 , the parameter space in which He-strong stars are known to exist has doubled in terms of rotational velocity.
Astronomy and Astrophysics | 2003
S. Štefl; Dietrich Baade; Th. Rivinius; S. Otero; O. Stahl; A. Budovičová; A. Kaufer; M. Maintz
Echelle spectroscopy and mostly unaided-eye photometry of the southern Be star ω CMa were obtained in the period 1996-2003. The monitoring is bracketed by two brightenings by 0. m 4-0. m 5. The results of a literature search suggest that such phases occur about once a decade and have various commonalities. Along with these photometric events goes enhanced line emission. This is due to an increased total mass of the disk as well as to a change in its density profile. The models by Poeckert & Marlborough (1978, 1979) imply that the enhanced continuum flux originates from the inner disk. Higher-order Balmer line emission is correlated with brightness. The increase in Hα is retarded by some months, possibly indicating a time delay in filling up and ionizing the outer disk. In the (U − B) vs. (B −V) colour diagram and the D54 vs. D34 Balmer decrement diagram the path from the ground to the bright state is distinct from the return path. This could result from the bulk of the disk matter being in the outer (inner) disk during the photometric ground (high) state, while the two transitions between the two states are both due to changes progressing radially outward. Some µ Cen-like outbursts (Rivinius et al. 1998c) seem to occur in all phases. It is conceivable that the build-up of the inner disk is caused by more frequent or more effective outbursts. During the photometric bright state various other phenomena gain in prominence and suggest this to be a phase of increased activity. Of particular interest, but possibly only apparently related to this phase, are absorption components at redshifts well beyond the range covered by the combination of rotation and nonradial pulsation.