Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thabet Tolaymat is active.

Publication


Featured researches published by Thabet Tolaymat.


Environmental Science & Technology | 2010

IMPACT OF ENVIRONMENTAL CONDITIONS (PH, IONIC STRENGTH, AND ELECTROLYTE TYPE) ON THE SURFACE CHARGE AND AGGREGATION OF SILVER NANOPARTICLES SUSPENSIONS

Amro M. El Badawy; Todd P. Luxton; Rendahandi G. Silva; Kirk G. Scheckel; Makram T. Suidan; Thabet Tolaymat

The impact of capping agents and environmental conditions (pH, ionic strength, and background electrolytes) on surface charge and aggregation potential of silver nanoparticles (AgNPs) suspensions were investigated. Capping agents are chemicals used in the synthesis of nanoparticles to prevent aggregation. The AgNPs examined in the study were as follows: (a) uncoated AgNPs (H(2)-AgNPs), (b) electrostatically stabilized (citrate and NaBH(4)-AgNPs), (c) sterically stabilized (polyvinylpyrrolidone (PVP)-AgNPs), and (d) electrosterically stabilized (branched polyethyleneimine (BPEI)-AgNPs)). The uncoated (H(2)-AgNPs), the citrate, and NaBH(4)-coated AgNPs aggregated at higher ionic strengths (100 mM NaNO(3)) and/or acidic pH (3.0). For these three nanomaterials, chloride (Cl(-), 10 mM), as a background electrolyte, resulted in a minimal change in the hydrodynamic diameter even at low pH (3.0). This was limited by the presence of residual silver ions, which resulted in the formation of stable negatively charged AgCl colloids. Furthermore, the presence of Ca(2+) (10 mM) resulted in aggregation of the three previously identified AgNPs regardless of the pH. As for PVP coated AgNPs, the ionic strength, pH and electrolyte type had no impact on the aggregation of the sterically stabilized AgNPs. The surface charge and aggregation of the BPEI coated AgNPs varied according to the solution pH.


Science of The Total Environment | 2010

An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers.

Thabet Tolaymat; Amro M. El Badawy; Ash Genaidy; Kirk G. Scheckel; Todd P. Luxton; Makram T. Suidan

BACKGROUND Most recently, renewed interest has arisen in manufactured silver nanomaterials because of their unusually enhanced physicochemical properties and biological activities compared to the bulk parent materials. A wide range of applications has emerged in consumer products ranging from disinfecting medical devices and home appliances to water treatment. Because the hypothesized mechanisms that govern the fate and transport of bulk materials may not directly apply to materials at the nanoscale, there are great concerns in the regulatory and research communities about potential environmental impacts associated with the use of silver nanoparticles. In particular, the unlimited combinations of properties emerging from the syntheses and applications of silver nanoparticles are presenting an urgent need to document the predominant salt precursors, reducing agents and stabilizing agents utilized in the synthesis processes of silver nanoparticles to guide the massive efforts required for environmental risk assessment and management. OBJECTIVES The primary objective of this study is to present an evidence-based environmental perspective of silver nanoparticle properties in syntheses and applications. The following specific aims are designed to achieve the study objective: Aim 1--to document the salt precursors and agents utilized in synthesizing silver nanoparticles; Aim 2--to determine the characteristics of silver nanoparticles currently in use in the scientific literature when integrated in polymer matrices to form nanocomposites and combined with other metal nanoparticles to form bimetallic nanoparticles; Aim 3--to provide a summary of the morphology of silver nanoparticles; and (4) Aim 4--to provide an environmental perspective of the evidence presented in Aims 1 to 3. METHODS A comprehensive electronic search of scientific databases was conducted in support of the study objectives. Specific inclusion criteria were applied to gather the most pertinent research articles. Data and information extraction relied on the type of synthesis methods, that is, synthesized silver nanoparticles in general and specific applications, nanocomposites, and bimetallic techniques. The following items were gathered for: type of silver salt, solvent, reducing agent, stabilizing agent, size, and type of application/nanocomposite/bimetallic, and template (for nanocomposites). The description of evidence was presented in tabular format. The critical appraisal was analyzed in graphical format and discussed. RESULTS An analysis of the scientific literature suggests that most synthesis processes produce spherical silver nanoparticles with less than 20nm diameter. Silver nanoparticles are often synthesized via reduction of AgNO(3), dissolution in water, and utilization of reductants also acting as capping or stabilizing agents for the control of particle size to ensure a relatively stable suspension. Two of the most commonly used reductants and stabilizing agents are NaBH(4) and citrate which yield particles with a negative surface charge over the environmental pH range (3-10). The environmental perspectives of these parameters are discussed. CONCLUDING REMARKS It is expected that the antibacterial property of bulk silver is carried over and perhaps enhanced, to silver nanoparticles. Therefore, when one examines the environmental issues associated with the manufacture and use of silver nanoparticle-based products, the antibacterial effects should always be taken into account particularly at the different stages of the product lifecycle. Currently, there are two arguments in the scientific literature about the mechanisms of antimicrobial properties of silver nanoparticles as they relate to colloidal silver particles and inonic silver. Methodologies of risk assessment and control have to account for both arguments.


ACS Nano | 2014

Toxicity Mechanisms in Escherichia coli Vary for Silver Nanoparticles and Differ from Ionic Silver

Angela Ivask; Amro ElBadawy; Chitrada Kaweeteerawat; David Boren; Heidi Fischer; Zhaoxia Ji; Chong Hyun Chang; Rong Liu; Thabet Tolaymat; Donatello Telesca; Jeffrey I. Zink; Yoram Cohen; Patricia A. Holden; Hilary A. Godwin

Silver nanoparticles (Ag NPs) are commonly added to various consumer products and materials to impair bacterial growth. Recent studies suggested that the primary mechanism of antibacterial action of silver nanoparticles is release of silver ion (Ag(+)) and that particle-specific activity of silver nanoparticles is negligible. Here, we used a genome-wide library of Escherichia coli consisting of ∼4000 single gene deletion mutants to elucidate which physiological pathways are involved in how E. coli responds to different Ag NPs. The nanoparticles studied herein varied in both size and surface charge. AgNO3 was used as a control for soluble silver ions. Within a series of differently sized citrate-coated Ag NPs, smaller size resulted in higher Ag ion dissolution and toxicity. Nanoparticles functionalized with cationic, branched polyethylene imine (BPEI) exhibited equal toxicity with AgNO3. When we used a genome-wide approach to investigate the pathways involved in the response of E. coli to different toxicants, we found that only one of the particles (Ag-cit10) exhibited a pattern of response that was statistically similar to that of silver ion. By contrast, the pathways involved in E. coli response to Ag-BPEI particles were more similar to those observed for another cationic nanoparticle that did not contain Ag. Overall, we found that the pathways involved in bacterial responses to Ag nanoparticles are highly dependent on physicochemical properties of the nanoparticles, particularly the surface characteristics. These results have important implications for the regulation and testing of silver nanoparticles.


Journal of Environmental Quality | 2009

The speciation of silver nanoparticles in antimicrobial fabric before and after exposure to a hypochlorite/detergent solution.

Christopher A. Impellitteri; Thabet Tolaymat; Kirk G. Scheckel

Because of their antibacterial properties, silver nanoparticles are often used in consumer products. To assess environmental and/or human health risks from these nanoparticles, there is a need to identify the chemical transformations that silver nanoparticles undergo in different environments. Thus an antimicrobial sock material containing Ag nanoparticles was examined by X-ray absorption spectroscopy to identify the speciation of Ag. The material was exposed to a hypochlorite/detergent solution and subjected to agitation. An elemental Ag nanopowder was also exposed to the hypochlorite/detergent solution or to a 1 mol L(-1) NaCl solution. Results showed that the sock material nanoparticles consisted of elemental Ag. After exposure to the hypochlorite/detergent solution, a significant portion (more than 50%) of the sock nanoparticles were converted, in situ, to AgCl. Results from exposures to elemental Ag nanopowder suggest that an oxidation step is necessary for the elemental Ag nanoparticles to transform into AgCl as there was no evidence of AgCl formation in the presence of chloride alone. As a result, if Ag ions leach from consumer products, any chloride present may quickly scavenge the ions. In addition, the efficacy of Ag, as an antimicrobial agent in fabrics, may be limited, or even negated, after washing in solutions containing oxidizers as AgCl is much less reactive than Ag ion.


Science of The Total Environment | 2014

Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: Comparison between general linear model-predicted and observed toxicity

Thilini Silva; Lok R. Pokhrel; Brajesh Dubey; Thabet Tolaymat; Kurt J. Maier; Xuefeng Liu

Mechanism underlying nanotoxicity has remained elusive. Hence, efforts to understand whether nanoparticle properties might explain its toxicity are ongoing. Considering three different types of organo-coated silver nanoparticles (AgNPs): citrate-coated AgNP, polyvinylpyrrolidone-coated AgNP, and branched polyethyleneimine-coated AgNP, with different surface charge scenarios and core particle sizes, herein we systematically evaluate the potential role of particle size and surface charge on the toxicity of the three types of AgNPs against two model organisms, Escherichia coli and Daphnia magna. We find particle size, surface charge, and concentration dependent toxicity of all the three types of AgNPs against both the test organisms. Notably, Ag(+) (as added AgNO3) toxicity is greater than each type of AgNPs tested and the toxicity follows the trend: AgNO3 > BPEI-AgNP > Citrate-AgNP > PVP-AgNP. Modeling particle properties using the general linear model (GLM), a significant interaction effect of primary particle size and surface charge emerges that can explain empirically-derived acute toxicity with great precision. The model explains 99.9% variation of toxicity in E. coli and 99.8% variation of toxicity in D. magna, revealing satisfactory predictability of the regression models developed to predict the toxicity of the three organo-coated AgNPs. We anticipate that the use of GLM to satisfactorily predict the toxicity based on nanoparticle physico-chemical characteristics could contribute to our understanding of nanotoxicology and underscores the need to consider potential interactions among nanoparticle properties when explaining nanotoxicity.


Science of The Total Environment | 2012

The impact of stabilization mechanism on the aggregation kinetics of silver nanoparticles.

Amro M. El Badawy; Kirk G. Scheckel; Makram T. Suidan; Thabet Tolaymat

The use of silver nanoparticles (AgNPs) for various applications is growing drastically. The increase in use will eventually lead to their release into the environment. The tendency of AgNPs to aggregate and the kinetics of aggregation are major factors that govern their fate in the environment. Dynamic light scattering (DLS) was utilized to investigate the electrolyte-induced aggregation kinetics (NaNO₃, NaCl and Ca(NO₃)₂) of coated and uncoated AgNPs which are electrostatically (H₂-AgNPs and Citrate-AgNPs), sterically (polyvinylpyrrolidone (PVP)-AgNPs) and electrosterically (branched polyethyleneimine (BPEI)-AgNPs) stabilized. The aggregation kinetics of the electrostatically stabilized AgNPs was in agreement with the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and the AgNPs exhibited both reaction-limited and diffusion-limited regimes. The H₂-AgNPs had critical coagulation concentrations (CCC) of 25, 30 and 3mM in the presence of NaNO₃, NaCl and Ca(NO₃)₂ salts, respectively. The Citrate-AgNPs had CCC of 70, 70 and 5 mM in the presence of NaNO₃, NaCl and Ca(NO₃)₂ salts, respectively. The values of the Hamaker constant for the electrostatically stabilized AgNPs were also determined and the values were in agreement with the reported values for metallic particles. The aggregation kinetics for both the sterically and electrosterically stabilized AgNPs (PVP-AgNPs and BPEI-AgNPs) was not in agreement with the DLVO theory and the particles were resistant to aggregation even at high ionic strength and electrolyte valence. The PVP-AgNPs and the BPEI-AgNPs had no critical aggregation concentration value at the investigated ionic strength values.


Environmental Science & Technology | 2010

Synchrotron Speciation of Silver and Zinc Oxide Nanoparticles Aged in a Kaolin Suspension

Kirk G. Scheckel; Todd P. Luxton; Amro M. El Badawy; Christopher A. Impellitteri; Thabet Tolaymat

Assessments of the environmental fate and mobility of nanoparticles must consider the behavior of nanoparticles in relevant environmental systems that may result in speciation changes over time. Environmental conditions may act on nanoparticles to change their size, shape, and surface chemistry. Changing these basic characteristics of nanoparticles may result in a final reaction product that is significantly different than the initial nanomaterial. As such, basing long-term risk and toxicity on the initial properties of a nanomaterial may lead to erroneous conclusions if nanoparticles change upon release to the environment. The influence of aging on the speciation and chemical stability of silver and zinc oxide nanoparticles in kaolin suspensions was examined in batch reactors for up to 18 months. Silver nanoparticles remained unchanged in sodium nitrate suspensions; however, silver chloride was identified with the metallic silver nanoparticles in sodium chloride suspensions and may be attributed to an in situ silver chloride surface coating. Zinc oxide nanoparticles were rapidly converted via destabilization/dissolution mechanisms to Zn(2+) inner-sphere sorption complexes within 1 day of reaction and these sorption complexes were maintained through the 12 month aging processes. Chemical and physical alteration of nanomaterials in the environment must be examined to understand fate, mobility, and toxicology.


ACS Nano | 2013

A Multi-Stakeholder Perspective on the Use of Alternative Test Strategies for Nanomaterial Safety Assessment

Andre E. Nel; Elina Nasser; Hilary A. Godwin; David Avery; Tina Bahadori; Lynn Bergeson; Elizabeth Beryt; James C. Bonner; Darrell R. Boverhof; Janet Carter; Vince Castranova; J. R. DeShazo; Saber M. Hussain; Agnes B. Kane; Frederick Klaessig; Eileen D. Kuempel; Mark Lafranconi; Robert Landsiedel; Timothy F. Malloy; Mary Beth Miller; Jeffery Morris; Kenneth Moss; Günter Oberdörster; Kent E. Pinkerton; Richard C. Pleus; Jo Anne Shatkin; Russell S. Thomas; Thabet Tolaymat; Amy Wang; Jeffrey Wong

There has been a conceptual shift in toxicological studies from describing what happens to explaining how the adverse outcome occurs, thereby enabling a deeper and improved understanding of how biomolecular and mechanistic profiling can inform hazard identification and improve risk assessment. Compared to traditional toxicology methods, which have a heavy reliance on animals, new approaches to generate toxicological data are becoming available for the safety assessment of chemicals, including high-throughput and high-content screening (HTS, HCS). With the emergence of nanotechnology, the exponential increase in the total number of engineered nanomaterials (ENMs) in research, development, and commercialization requires a robust scientific approach to screen ENM safety in humans and the environment rapidly and efficiently. Spurred by the developments in chemical testing, a promising new toxicological paradigm for ENMs is to use alternative test strategies (ATS), which reduce reliance on animal testing through the use of in vitro and in silico methods such as HTS, HCS, and computational modeling. Furthermore, this allows for the comparative analysis of large numbers of ENMs simultaneously and for hazard assessment at various stages of the product development process and overall life cycle. Using carbon nanotubes as a case study, a workshop bringing together national and international leaders from government, industry, and academia was convened at the University of California, Los Angeles, to discuss the utility of ATS for decision-making analyses of ENMs. After lively discussions, a short list of generally shared viewpoints on this topic was generated, including a general view that ATS approaches for ENMs can significantly benefit chemical safety analysis.


Science of The Total Environment | 2013

Changes in silver nanoparticles exposed to human synthetic stomach fluid: Effects of particle size and surface chemistry

Samuel K. Mwilu; Amro M. El Badawy; Karen D. Bradham; Clay Nelson; David J. Thomas; Kirk G. Scheckel; Thabet Tolaymat; Longzhou Ma; Kim R. Rogers

The significant rise in consumer products and applications utilizing the antibacterial properties of silver nanoparticles (AgNPs) has increased the possibility of human exposure. The mobility and bioavailability of AgNPs through the ingestion pathway will depend, in part, on properties such as particle size and the surface chemistries that will influence their physical and chemical reactivities during transit through the gastrointestinal tract. This study investigates the interactions between synthetic stomach fluid and AgNPs of different sizes and with different capping agents. Changes in morphology, size and chemical composition were determined during a 30 min exposure to synthetic human stomach fluid (SSF) using Absorbance Spectroscopy, High Resolution Transmission Electron and Scanning Electron Microscopy (TEM/SEM), Dynamic Light Scattering (DLS), and Nanoparticle Tracking Analysis (NTA). AgNPs exposed to SSF were found to aggregate significantly and also released ionic silver which physically associated with the particle aggregates as silver chloride. Generally, the smaller sized AgNPs (<10nm) showed higher rates of aggregation and physical transformation than larger particles (75 nm). Polyvinylpyrrolidone (pvp)-stabilized AgNPs prepared in house behaved differently in SSF than particles obtained from a commercial source despite having similar surface coating and size distribution characteristics.


Science of The Total Environment | 2012

Alterations in physical state of silver nanoparticles exposed to synthetic human stomach fluid

Kim R. Rogers; Karen D. Bradham; Thabet Tolaymat; David J. Thomas; Thomas Hartmann; Longzhou Ma; Alan Williams

The bioavailability of ingested silver nanoparticles (AgNPs) depends in large part on initial particle size, shape and surface coating, properties which will influence aggregation, solubility and chemical composition during transit of the gastrointestinal tract. Citrate-stabilized AgNPs were exposed to synthetic human stomach fluid (SSF) (pH 1.5) and changes in size, shape, zeta potential, hydrodynamic diameter and chemical composition were determined during a 1h exposure period using Surface Plasmon Resonance (SPR), High Resolution Transmission Electron Microscopy/Energy Dispersive X-ray Spectroscopy (TEM/EDS), Dynamic Light Scattering (DLS) and X-ray Powder Diffraction (XRD) combined with Rietveld analysis. Exposure of AgNPs to SSF produced a rapid decrease in the SPR peak at 414nm and the appearance of a broad absorbance peak in the near infrared (NIR) spectral region. During exposure to SSF, changes in zeta potential, aggregation and morphology of the particles were also observed as well as production of silver chloride which appeared physically associated with particle aggregates.

Collaboration


Dive into the Thabet Tolaymat's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Debra R. Reinhart

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Ash Genaidy

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Kirk G. Scheckel

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Brajesh Dubey

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge