Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thai Vu Ton is active.

Publication


Featured researches published by Thai Vu Ton.


Toxicology and Applied Pharmacology | 2003

Chemical-specific alterations in ras, p53, and β-catenin genes in hemangiosarcomas from B6C3F1 mice exposed to o-nitrotoluene or riddelliine for 2 years

Hue-Hua L. Hong; Thai Vu Ton; Theodora R. Devereux; Cindy R. Moomaw; Natasha P. Clayton; Po-Chuen Chan; June K. Dunnick; Robert C. Sills

The most prominent neoplastic lesions in mice in the 2-year studies of o-nitrotoluene and riddelliine were hemangiosarcomas. Fifteen o-nitrotoluene-induced hemangiosarcomas of the skeletal muscle, subcutaneous tissue, and mesentery; 12 riddelliine-induced hemangiosarcomas of the liver; and 15 spontaneous subcutaneous hemangiosarcomas were examined for genetic alterations in ras, p53, and beta-catenin genes. Mutations in at least one of these genes were identified in 13 of 15 (87%) of the o-nitrotoluene-induced hemangiosarcomas with missense mutations in p53 exons 5-8 detected in 11 of 15 (73%) of these neoplasms. Seven of 15 (47%) hemangiosarcomas from mice exposed to o-nitrotoluene had deletions at exon 2 splice sites or smaller deletions in the beta-catenin gene. K-ras mutation was detected in only 1 of the 15 (7%) o-nitrotoluene-induced hemangiosarcomas. In contrast to the o-nitrotoluene study, 7/12 (58%) riddelliine-induced hemangiosarcomas had K-ras codon 12 GTT mutations and, when screened by immunohistochemistry, 9/12 (75%) had strong staining for the p53 protein in malignant endothelial cells, the cells of origin of hemangiosarcomas. Riddelliine-induced hemangiosarcomas were negative for the beta-catenin protein. Spontaneous hemangiosarcomas from control mice lacked both p53 and beta-catenin protein expression and ras mutations. Our data indicated that p53 and beta-catenin mutations in the o-nitrotoluene-induced hemangiosarcomas and K-ras mutations and p53 protein expression in riddelliine-induced hemangiosarcomas most likely occurred as a result of the genotoxic effects of these chemicals. It also suggests that these mutations play a role in the pathogenesis of the respective hemangiosarcomas in B6C3F1(1) mice.


Toxicologic Pathology | 2013

Hepatocellular Carcinomas in B6C3F1 Mice Treated with Ginkgo biloba Extract for Two Years Differ from Spontaneous Liver Tumors in Cancer Gene Mutations and Genomic Pathways

Mark J. Hoenerhoff; Arun R. Pandiri; Stephanie A. Snyder; Hue Hua L. Hong; Thai Vu Ton; Shyamal D. Peddada; Keith R. Shockley; Kristine L. Witt; Po Chan; Cynthia V. Rider; Linda Kooistra; Abraham Nyska; Robert C. Sills

Ginkgo biloba leaf extract (GBE) has been used for centuries in traditional Chinese medicine and today is used as an herbal supplement touted for improving neural function and for its antioxidant and anticancer effects. Herbal supplements have the potential for consumption over extended periods of time, with a general lack of sufficient data on long-term carcinogenicity risk. Exposure of B6C3F1 mice to GBE in the 2-year National Toxicology Program carcinogenicity bioassay resulted in a dose-dependent increase in hepatocellular tumors, including hepatocellular carcinoma (HCC). We show that the mechanism of hepatocarcinogenesis in GBE exposed animals is complex, involving alterations in H-ras and Ctnnb1 mutation spectra, WNT pathway dysregulation, and significantly altered gene expression associated with oncogenesis, HCC development, and chronic xenobiotic and oxidative stress compared to spontaneous HCC. This study provides a molecular context for the genetic changes associated with hepatocarcinogenesis in GBE exposed mice and illustrates the marked differences between these tumors and those arising spontaneously in the B6C3F1 mouse. The molecular changes observed in HCC from GBE-treated animals may be of relevance to those seen in human HCC and other types of cancer, and provide important data on potential mechanisms of GBE hepatocarcinogenesis.


Toxicologic Pathology | 2004

Contribution of Magnetic Resonance Microscopy in the 12-Week Neurotoxicity Evaluation of Carbonyl Sulfide in Fischer 344 Rats:

Robert C. Sills; Daniel L. Morgan; David W. Herr; Peter B. Little; Nneka M. George; Thai Vu Ton; Nancy E. Love; Robert R. Maronpot; G. Allan Johnson

In this carbonyl sulfide (COS) study, magnetic resonance microscopy (MRM) and detailed light microscopic evaluation effectively functioned in parallel to assure that the distribution and degree of pathology in the brain was accurately represented. MRM is a powerful imaging modality that allows for excellent identification of neuroanatomical structures coupled with the ability to acquire 200 or more cross-sectional images of the brain, and the ability to display them in multiple planes. F344 rats were exposed to 200—600 ppm COS for up to 12 weeks. Prior to MRM, rats were anesthetized and cardiac perfused with McDowell Trumps fixative containing a gadolinium MR contrast medium. Fixed specimens were scanned at the Duke Center for In Vivo Microscopy on a 9.4 Tesla magnetic resonance system adapted explicitly for microscopic imaging. An advantage of MRM in this study was the ability to identify lesions in rats that appeared clinically normal prior to sacrifice and the opportunity to identify lesions in areas of the brain which would not be included in conventional studies. Other advantages include the ability to examine the brain in multiple planes (transverse, dorsal, sagittal) and obtain and save the MRM images in a digital format that allows for postexperimental data processing and manipulation. MRM images were correlated with neuroanatomical and neuropathological findings. All suspected MRM images were compared to corresponding H&E slides. An important aspect of this study was that MRM was critical in defining our strategy for sectioning the brain, and for designing mechanistic studies (cytochrome oxidase evaluations) and functional assessments (electrophysiology studies) on specifically targeted anatomical sites following COS exposure.


Toxicologic Pathology | 2011

Aloe vera Non-Decolorized Whole Leaf Extract-Induced Large Intestinal Tumors in F344 Rats Share Similar Molecular Pathways with Human Sporadic Colorectal Tumors

Arun R. Pandiri; Robert C. Sills; Mark J. Hoenerhoff; Shyamal D. Peddada; Thai Vu Ton; Hue Hua L. Hong; Gordon P. Flake; David E. Malarkey; Greg R. Olson; Igor P. Pogribny; Nigel J. Walker; Mary D. Boudreau

Aloe vera is one of the most commonly used botanicals for various prophylactic and therapeutic purposes. Recently, NTP/NCTR has demonstrated a dose-dependent increase in large intestinal tumors in F344 rats chronically exposed to Aloe barbadensis Miller (Aloe vera) non-decolorized whole leaf extract (AVNWLE) in drinking water. The morphological and molecular pathways of AVNWLE-induced large intestinal tumors in the F344 rats were compared to human colorectal cancer (hCRC) literature. Defined histological criteria were used to compare AVNWLE-induced large intestinal tumors with hCRC. The commonly mutated genes (Kras, Ctnnb1, and Tp53) and altered signaling pathways (MAPK, WNT, and TGF-β) important in hCRC were evaluated within AVNWLE-induced large intestinal tumors. Histological evaluation of the large intestinal tumors indicated eight of twelve adenomas (Ads) and four of twelve carcinomas (Cas). Mutation analysis of eight Ads and four Cas identified point mutations in exons 1 and 2 of the Kras gene (two of eight Ads, two of four Cas), and in exon 2 of the Ctnnb1 gene (three of eight Ads, one of four Cas). No Tp53 (exons 5–8) mutations were found in Ads or Cas. Molecular pathways important in hCRC such as MAPK, WNT, and TGF-β signaling were also altered in AVNWLE-induced Ads and Cas. In conclusion, the AVNWLE-induced large intestinal tumors in F344 rats share several similarities with hCRC at the morphological and molecular levels.


Toxicologic Pathology | 2012

Differential Transcriptomic Analysis of Spontaneous Lung Tumors in B6C3F1 Mice: Comparison to Human Non–Small Cell Lung Cancer

Arun R. Pandiri; Robert C. Sills; Vincent Ziglioli; Thai Vu Ton; Hue Hua L. Hong; Stephanie A. Lahousse; Kevin Gerrish; Scott S. Auerbach; Keith R. Shockley; Pierre R. Bushel; Shyamal D. Peddada; Mark J. Hoenerhoff

Lung cancer is the leading cause of cancer-related death in people and is mainly due to environmental factors such as smoking and radon. The National Toxicology Program (NTP) tests various chemicals and mixtures for their carcinogenic hazard potential. In the NTP chronic bioassay using B6C3F1 mice, the incidence of lung tumors in treated and control animals is second only to the liver tumors. In order to study the molecular mechanisms of chemically induced lung tumors, an understanding of the genetic changes that occur in spontaneous lung (SL) tumors from untreated control animals is needed. The authors have evaluated the differential transcriptomic changes within SL tumors compared to normal lungs from untreated age-matched animals. Within SL tumors, several canonical pathways associated with cancer (eukaryotic initiation factor 2 signaling, RhoA signaling, PTEN signaling, and mammalian target of rapamycin signaling), metabolism (Inositol phosphate metabolism, mitochondrial dysfunction, and purine and pyramidine metabolism), and immune responses (FcγR-mediated phagocytosis, clathrin-mediated endocytosis, interleukin 8 signaling, and CXCR4 signaling) were altered. Meta-analysis of murine SL tumors and human non–small cell lung cancer transcriptomic data sets revealed a high concordance. These data provide important information on the differential transcriptomic changes in murine SL tumors that will be critical to our understanding of chemically induced lung tumors and will aid in hazard analysis in the NTP 2-year carcinogenicity bioassays.


Toxicologic Pathology | 2008

Gene Expression Studies Demonstrate that the K-ras/Erk MAP Kinase Signal Transduction Pathway and Other Novel Pathways Contribute to the Pathogenesis of Cumene-induced Lung Tumors

Nobuko Wakamatsu; Jennifer B. Collins; Joel S. Parker; Mathewos Tessema; Natasha P. Clayton; Thai Vu Ton; Hue Hua L. Hong; Steven A. Belinsky; Theodora R. Devereux; Robert C. Sills; Stephanie A. Lahousse

National Toxicology Program (NTP) inhalation studies demonstrated that cumene significantly increased the incidence of alveolar/bronchiolar adenomas and carcinomas in B6C3F1 mice. Cumene or isopropylbenzene is a component of crude oil used primarily in the production of phenol and acetone. The authors performed global gene expression analysis to distinguish patterns of gene regulation between cumene-induced tumors and normal lung tissue and to look for patterns based on the presence or absence of K-ras and p53 mutations in the tumors. Principal component analysis segregated the carcinomas into groups with and without K-ras mutations, but failed to separate the tumors based on p53 mutation status. Expression of genes associated with the Erk MAP kinase signaling pathway was significantly altered in carcinomas with K-ras mutations compared to tumors without K-ras mutations or normal lung. Gene expression analysis also suggested that cumene-induced carcinomas with K-ras mutations have greater malignant potential than those without mutations. In addition, significance analysis of function and expression (SAFE) demonstrated expression changes of genes regulated by histone modification in carcinomas with K-ras mutations. The gene expression analysis suggested the formation of alveolar/bronchiolar carcinomas in cumene-exposed mice typically involves mutation of K-ras, which results in increased Erk MAP kinase signaling and modification of histones.


Toxicology Letters | 2017

Tetrabromobisphenol A activates the hepatic interferon pathway in rats

June K. Dunnick; Daniel L. Morgan; S.A. Elmore; Kevin Gerrish; Arun R. Pandiri; Thai Vu Ton; Keith R. Shockley; B.A. Merrick

Tetrabromobisphenol A (TBBPA) is a widely used flame retardant in printed circuit boards, paper, and textiles. In a two-year study, TBBPA showed evidence of uterine tumors in female Wistar-Han rats and liver and colon tumors in B6C3F1 mice. In order to gain further insight into early gene and pathway changes leading to cancer, we exposed female Wistar Han rats to TBBPA at 0, 25, 250, or 1000mg/kg (oral gavage in corn oil, 5×/week) for 13 weeks. Because at the end of the TBBPA exposure period, there were no treatment-related effects on body weights, liver or uterus lesions, and liver and uterine organ weights were within 10% of controls, only the high dose animals were analyzed. Analysis of the hepatic and uterine transcriptomes showed TBBPA-induced changes primarily in the liver (1000mg/kg), with 159 transcripts corresponding to 132 genes differentially expressed compared to controls (FDR=0.05). Pathway analysis showed activation of interferon (IFN) and metabolic networks. TBBPA induced few molecular changes in the uterus. Activation of the interferon pathway in the liver occurred after 13-weeks of TBBPA exposure, and with longer term TBBPA exposure this may lead to immunomodulatory changes that contribute to carcinogenic processes.


Toxicologic Pathology | 2015

Kras, Egfr, and Tp53 Mutations in B6C3F1/N Mouse and F344/NTac Rat Alveolar/Bronchiolar Carcinomas Resulting from Chronic Inhalation Exposure to Cobalt Metal

Hue Hua L. Hong; Mark J. Hoenerhoff; Thai Vu Ton; Ronald A. Herbert; Grace E. Kissling; Michelle J. Hooth; Mamta Behl; Kristine L. Witt; Stephanie L. Smith-Roe; Robert C. Sills; Arun R. Pandiri

Rodent lung tumors are morphologically similar to a subtype of human lung adenocarcinomas. The objective of this study was to evaluate Kirsten rat sarcoma oncogene homolog (Kras), epidermal growth factor receptor (Egfr), and tumor protein 53 (Tp53) mutations, which are relevant to human lung cancer, in cobalt metal dust (CMD)-induced alveolar/bronchiolar tumors of B6C3F1/N mice and F344/NTac rats. Kras mutations were detected in 67% (mice) and 31% (rats) of CMD-induced lung tumors and were predominantly exon 1 codon 12 G to T transversions (80% in mice and 57% in rats). Egfr mutations were detected in 17% (both mice and rats) of CMD-induced lung tumors and were predominantly in exon 20 with 50% G to A transitions (mice and rats). Tp53 mutations were detected in 19% (mice) and 23% (rats) of CMD-induced lung tumors and were predominant in exon 5 (mice, 69% transversions) and exon 6 (rats, all transitions). No mutations were observed for these genes in spontaneous lung tumors or normal lungs from untreated controls. Ames assay indicated that CMD is mutagenic in the absence but not in the presence of S9 mix. Thus, the mutation data (G to T transversions) and Ames assay results suggest that oxidative damage to DNA may be a contributing factor in CMD-induced pulmonary carcinogenesis in rodents.


Toxicologic Pathology | 2014

Spontaneous Mesotheliomas in F344/N Rats Are Characterized by Dysregulation of Cellular Growth and Immune Function Pathways

Pamela E. Blackshear; Arun R. Pandiri; Thai Vu Ton; Natasha P. Clayton; Keith R. Shockley; Shyamal D. Peddada; Kevin Gerrish; Robert C. Sills; Mark J. Hoenerhoff

Aged male Fischer 344/N rats are prone to developing spontaneous peritoneal mesotheliomas that arise predominantly from the tunica vaginalis of the testes. A definitive cause for the predominance of this neoplasm in F344/N rats is unknown. Investigation of the molecular alterations that occur in spontaneous rat mesotheliomas may provide insight into their pathogenesis as well enable a better understanding regarding the mechanisms underlying chemically induced mesothelioma in rodents. Mesothelial cell function represents a complex interplay of pathways related to host defense mechanisms and maintenance of cellular homeostasis. Global gene expression profiles of spontaneous mesotheliomas from vehicle control male F344/N rats from 2-year National Toxicology Program carcinogenicity bioassays were analyzed to determine the molecular features of these tumors and elucidate tumor-specific gene expression profiles. The resulting gene expression pattern showed that spontaneous mesotheliomas are associated with upregulation of various growth factors, oncogenes, cytokines, pattern recognition response receptors, and pathogen-associated molecular patterns receptors, and the production of reactive oxygen and nitrogen species, as well as downregulation of apoptosis pathways. Alterations in these pathways in turn trigger molecular responses that stimulate cell proliferation and promote tumor survival and progression.


Toxicologic Pathology | 2015

Gene Expression of Mesothelioma in Vinylidene Chloride–exposed F344/N Rats Reveal Immune Dysfunction, Tissue Damage, and Inflammation Pathways

Pamela E. Blackshear; Arun R. Pandiri; Hiroaki Nagai; Sachin Bhusari; Hue Hua Hong; Thai Vu Ton; Natasha P. Clayton; Michael E. Wyde; Keith R. Shockley; Shyamal D. Peddada; Kevin Gerrish; Robert C. Sills; Mark J. Hoenerhoff

A majority (∼80%) of human malignant mesotheliomas are asbestos-related. However, non-asbestos risk factors (radiation, chemicals, and genetic factors) account for up to 30% of cases. A recent 2-year National Toxicology Program carcinogenicity bioassay showed that male F344/N rats exposed to the industrial toxicant vinylidene chloride (VDC) resulted in a marked increase in malignant mesothelioma. Global gene expression profiles of these tumors were compared to spontaneous mesotheliomas and the F344/N rat mesothelial cell line (Fred-PE) in order to characterize the molecular features and chemical-specific profiles of mesothelioma in VDC-exposed rats. As expected, mesotheliomas from control and VDC-exposed rats shared pathways associated with tumorigenesis, including cellular and tissue development, organismal injury, embryonic development, inflammatory response, cell cycle regulation, and cellular growth and proliferation, while mesotheliomas from VDC-exposed rats alone showed overrepresentation of pathways associated with pro-inflammatory pathways and immune dysfunction such as the nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway, interleukin (IL)-8 and IL-12 signaling, interleukin responses, Fc receptor signaling, and natural killer and dendritic cells signaling, as well as overrepresentation of DNA damage and repair. These data suggest that a chronic, pro-inflammatory environment associated with VDC exposure may exacerbate disturbances in oncogene, growth factor, and cell cycle regulation, resulting in an increased incidence of mesothelioma.

Collaboration


Dive into the Thai Vu Ton's collaboration.

Top Co-Authors

Avatar

Arun R. Pandiri

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Robert C. Sills

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Keith R. Shockley

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin Gerrish

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Shyamal D. Peddada

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hue Hua L. Hong

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Natasha P. Clayton

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Daniel L. Morgan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Julie F. Foley

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge