Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thanasis E. Economou is active.

Publication


Featured researches published by Thanasis E. Economou.


Science | 2004

The Opportunity Rover's Athena science investigation at Meridiani Planum, Mars

Steven W. Squyres; Raymond E. Arvidson; James F. Bell; J. Brückner; Nathalie A. Cabrol; Wendy M. Calvin; Michael H. Carr; Philip R. Christensen; B. C. Clark; Larry S. Crumpler; D. J. Des Marais; C. d'Uston; Thanasis E. Economou; Jack D. Farmer; William H. Farrand; William M. Folkner; M. P. Golombek; S. Gorevan; Joshua A. Grant; Ronald Greeley; John P. Grotzinger; Larry A. Haskin; K. E. Herkenhoff; S. F. Hviid; James Richard Johnson; G. Klingelhöfer; Andrew H. Knoll; Geoffrey A. Landis; Mark T. Lemmon; R. Li

The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by episodic inundation by shallow surface water, followed by evaporation, exposure, and desiccation. Hematite-rich spherules are embedded in the rock and eroding from them. We interpret these spherules to be concretions formed by postdepositional diagenesis, again involving liquid water.


Science | 2006

Impact Features on Stardust: Implications for Comet 81P/Wild 2 Dust

Friedrich Hörz; Janet Borg; John P. Bradley; John C. Bridges; D. E. Brownlee; Mark J. Burchell; Miaofang Chi; Mark J. Cintala; Zurong Dai; Zahia Djouadi; G. Dominguez; Thanasis E. Economou; Sam A. J. Fairey; Christine Floss; Ian A. Franchi; Giles A. Graham; Simon F. Green; Philipp R. Heck; Peter Hoppe; Joachim Huth; Hope A. Ishii; Anton T. Kearsley; J. Kissel; J. Leitner; Hugues Leroux; K. K. Marhas; Keiko Messenger; Craig S. Schwandt; Thomas A. See; Christopher J. Snead

Particles emanating from comet 81P/Wild 2 collided with the Stardust spacecraft at 6.1 kilometers per second, producing hypervelocity impact features on the collector surfaces that were returned to Earth. The morphologies of these surprisingly diverse features were created by particles varying from dense mineral grains to loosely bound, polymineralic aggregates ranging from tens of nanometers to hundreds of micrometers in size. The cumulative size distribution of Wild 2 dust is shallower than that of comet Halley, yet steeper than that of comet Grigg-Skjellerup.


Journal of Geophysical Research | 1999

Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site

Harry Y. McSween; Scott L. Murchie; Joy A. Crisp; Nathan T. Bridges; Robert C. Anderson; James F. Bell; Daniel T. Britt; J. Brückner; G. Dreibus; Thanasis E. Economou; Anupam Ghosh; M. P. Golombek; J. P. Greenwood; James Richard Johnson; Henry J. Moore; Richard V. Morris; T. J. Parker; R. Rieder; Robert B. Singer; H. Wänke

Rocks at the Mars Pathfinder site are probably locally derived. Textures on rock surfaces may indicate volcanic, sedimentary, or impact-generated rocks, but aeolian abration and dust coatings prevent unambiguous interpretation. Multispectral imaging has resolved four spectral classes of rocks: gray and red, which occur on different surfaces of the same rocks; pink, which is probably soil crusts; and maroon, which occurs as large boulders, mostly in the far field. Rocks are assigned to two spectral trends based on the position of peak reflectance: the primary spectral trend contains gray, red, and pink rocks; maroon rocks constitute the secondary spectral trend. The spatial pattern of spectral variations observed is oriented along the prevailing wind direction. The primary spectral trend arises from thin ferric coatings of aeolian dust on darker rocks. The secondary spectral trend is apparently due to coating by a different mineral, probably maghemite or ferrihydrite. A chronology based on rock spectra suggests that rounded maroon boulders constitute the oldest petrologic unit (a flood deposit), succeeded by smaller cobbles possibly deposited by impact, and followed by aeolian erosion and deposition. Nearly linear chemical trends in alpha proton X-ray spectrometer rock compositions are interpreted as mixing lines between rock and adhering dust, a conclusion supported by a correlation between sulfur abundance and red/blue spectral ratio. Extrapolations of regression lines to zero sulfur give the composition of a presumed igneous rock. The chemistry and normative mineralogy of the sulfur-free rock resemble common terrestrial volcanic rocks, and its classification corresponds to andesite. Igneous rocks of this composition may occur with clastic sedimentary rocks or impact melts and breccias. However, the spectral mottling expected on conglomerates or breccias is not observed in any APXS-analyzed rocks. Interpretation of the rocks as andesites is complicated by absence of a “1 μm” pyroxene absorption band. Plausible explanations include impact glass, band masking by magnetite, or presence of calcium- and iron-rich pyroxenes and olivine which push the absorption band minimum past the imagers spectral range. The inferred andesitic composition is most similar to terrestrial anorogenic icelandites, formed by fractionation of tholeiitic basaltic magmas. Early melting of a relatively primitive Martian mantle could produce an appropriate parent magma, supporting the ancient age of Pathfinder rocks inferred from their incorporation in Hesperian flood deposits. Although rocks of andesitic composition at the Pathfinder site may represent samples of ancient Martian crust, inferences drawn about a necessary role for water or plate tectonics in their petrogenesis are probably unwarranted.


Journal of Geophysical Research | 1999

Overview of the Mars Pathfinder Mission: Launch through landing, surface operations, data sets, and science results

Matthew P. Golombek; Robert C. Anderson; Jeffrey R. Barnes; James F. Bell; Nathan T. Bridges; Daniel T. Britt; J. Brückner; R. A. Cook; David Crisp; Joy A. Crisp; Thanasis E. Economou; William M. Folkner; Ronald Greeley; Robert M. Haberle; R. B. Hargraves; J.A. Harris; A. F. C. Haldemann; K. E. Herkenhoff; S. F. Hviid; R. Jaumann; James Richard Johnson; Pieter Kallemeyn; H. U. Keller; R. Kirk; J. M. Knudsen; Søren Ejling Larsen; Mark T. Lemmon; M. B. Madsen; J.A. Magalhaes; J. N. Maki

Mars Pathfinder successfully landed at Ares Vallis on July 4, 1997, deployed and navigated a small rover about 100 m clockwise around the lander, and collected data from three science instruments and ten technology experiments. The mission operated for three months and returned 2.3 Gbits of data, including over 16,500 lander and 550 rover images, 16 chemical analyses of rocks and soil, and 8.5 million individual temperature, pressure and wind measurements. Path-finder is the best known location on Mars, having been clearly identified with respect to other features on the surface by correlating five prominent horizon features and two small craters in lander images with those in high-resolution orbiter images and in inertial space from two-way ranging and Doppler tracking. Tracking of the lander has fixed the spin pole of Mars, determined the precession rate since Viking 20 years ago, and indicates a polar moment of inertia, which constrains a central metallic core to be between 1300 and ∼2000 km in radius. Dark rocks appear to be high in silica and geochemically similar to anorogenic andesites; lighter rocks are richer in sulfur and lower in silica, consistent with being coated with various amounts of dust. Rover and lander images show rocks with a variety of morphologies, fabrics and textures, suggesting a variety of rock types are present. Rounded pebbles and cobbles on the surface as well as rounded bumps and pits on some rocks indicate these rocks may be conglomerates (although other explanations are also possible), which almost definitely require liquid water to form and a warmer and wetter past. Air-borne dust is composed of composite silicate particles with a small fraction of a highly magnetic mineral, interpreted to be most likely maghemite; explanations suggest iron was dissolved from crustal materials during an active hydrologic cycle with maghemite freeze dried onto silicate dust grains. Remote sensing data at a scale of a kilometer or greater and an Earth analog correctly predicted a rocky plain safe for landing and roving with a variety of rocks deposited by catstrophic floods, which are relatively dust free. The surface appears to have changed little since it formed billions of years ago, with the exception that eolian activity may have deflated the surface by ∼3–7 cm, sculpted wind tails, collected sand into dunes, and eroded ventifacts (fluted and grooved rocks). Pathfinder found a dusty lower atmosphere, early morning water ice clouds, and morning near-surface air temperatures that changed abruptly with time and height. Small scale vortices, interpreted to be dust devils, were observed repeatedly in the afternoon by the meteorology instruments and have been imaged.


Journal of Geophysical Research | 2004

Release and fragmentation of aggregates to produce heterogeneous, lumpy coma streams

B. C. Clark; Simon F. Green; Thanasis E. Economou; Scott A. Sandford; Michael E. Zolensky; Neil McBride; D. E. Brownlee

The unpredicted heterogeneity in particle number density in the coma of Wild 2 is consistent with delayed fragmentation to produce small particles from larger aggregates initially ejected from the cometary nucleus. The resultant heterogeneous inner coma results in stochastic variations in particle number and size distribution. Fragmentation can be accelerated after aggregate release by enhanced heating and one or more additional factors such as abrupt depressurization, phase transitions, exothermic chemical reactions, centrifugal forces, and electrostatic repulsion. Certain predicted characteristics of such in-flight disaggregation in coma particle streams correspond to known cometary phenomena.


Science | 1970

Chemical Composition of the Lunar Surface in a Terra Region near the Crater Tycho

James H. Patterson; Anthony L. Turkevich; Ernest J. Franzgrote; Thanasis E. Economou; Kenneth P. Sowinski

More precise and comprehensive analytical results for lunar surface material in a terra region have been derived from the data of the alpha-scattering experiment on Surveyor 7. The silicon content and the low sodium abundance are close to that of mare material. The abundances of titanium and iron are at least a factor of 2 lower, whereas the abundances of aluminum and calcium are significantly higher. The analytical results provide direct evidence for chemical differentiation in the moon and indicate a lunar crust of appreciably lower density than the whole moon and with lower density and higher albedo than lunar mare material.


Physical Review Letters | 1991

Double beta decay of U-238

Anthony L. Turkevich; Thanasis E. Economou; George A. Cowan

The half-life for the decay of {sup 238}U to {sup 238}Pu has been measured to be (2.0{plus minus}0.6){times}10{sup 21} yr by chemically isolating and measuring from the resultant alpha particles the amount of plutonium that had accumulated in 35 yr from 8.4 Kg of purified uranyl nitrate. Other sources of {sup 238}Pu have been studied and found negligible.


Science | 1970

Chemical Composition of the Lunar Surface in Sinus Medii

Ernest J. Franzgrote; James H. Patterson; Anthony L. Turkevich; Thanasis E. Economou; Kenneth P. Sowinski

More precise and comprehensive analytical results for lunar material in Sinus Medii have been derived from the alpha-scattering experiment on Surveyor VI. The amounts of the principal constituents at this mare are approximately the same as those of constituents at Mare Tranquillitatis. The sodium contents of both maria are lower than those of terrestrial basalts. The titanium content at Sinus Medii is lower than that at Mare Tranquillitatis; this suggests important differences in detailed chemical composition at different mare areas on the moon.


Science | 1970

Alpha Radioactivity of the Lunar Surface at the Landing Sites of Surveyors 5,6, and 7

Anthony L. Turkevich; James H. Patterson; Ernest J. Franzgrote; Kenneth P. Sowinski; Thanasis E. Economou

Evidence has been obtained for a radioactive deposit on the lunar surface at Mare Tranquillitatis with a total intensity of 0.09 � 0.03 alpha disintegration per second per square centimeter. The presence of polonium-210 in amounts that are close to equilibrium indicates a continuous turnover rate of lunar material at this site of less than 0.1 micrometer per year. The lack of such a deposit at two other lunar sites suggests lower local concentrations of uranium there.


Nuclear Instruments and Methods | 1976

An alpha particle instrument with alpha, proton, and X-ray modes for planetary chemical analyses

Thanasis E. Economou; Anthony L. Turkevich

Abstract The interaction of alpha particles with matter is employed in a compact instrument that could provide rather complete in-situ chemical analyses of surfaces and thin atmospheres of extraterrestrial bodies. The instrument is a miniaturized and improved version of the Surveyor lunar instrument. The backscattering of alpha particles and (α,p) reactions provide analytical data on the light elements (carbon-iron). An X-ray mode that detects the photons produced by the alpha sources provides sensitivity and resolution for the chemical elements heavier than about silicon. The X-rays are detected by semiconductor detectors having a resolution between 150 and 250 eV at 5.9 keV. Such an instrument can identify and determine with good accuracy 99% of the atoms (except hydrogen) in rocks. For many trace elements, the detecting sensitivity is a few ppm. Auxiliary sources could be used to enhance the sensitivities for elements of special interest. The instrument could probably withstand the acceleration involved in semi-hard landings.

Collaboration


Dive into the Thanasis E. Economou's collaboration.

Top Co-Authors

Avatar

Anthony L. Turkevich

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. E. Brownlee

University of Washington

View shared research outputs
Top Co-Authors

Avatar

B. C. Clark

Space Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sascha Kempf

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge