Theam Soon Lim
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Theam Soon Lim.
New Biotechnology | 2010
Theam Soon Lim; Svetlana Mollova; Florian Rubelt; Volker Sievert; Stefan Dübel; Hans Lehrach; Zoltán Konthur
For studying human antibody variable (V)-gene usage in any group of individuals or for the generation of recombinant human antibody libraries for phage display, quality and yield of the amplified V-gene repertoire is of utmost importance. Key parameters affecting the amplification of full antibody repertoires are V-gene specific primer design, complementary DNA (cDNA) synthesis from total RNA extracts of peripheral blood mononuclear cells (PBMCs) and ultimately the polymerase chain reaction (PCR). In this work we analysed all these factors; we performed a detailed bioinformatic analysis of V-gene specific primers based on VBASE2 and evaluated the influence of different commercially available reverse transcriptases on cDNA synthesis and polymerases on PCR efficiency. The primers presented cover near to 100% of all functional and putatively functional V-genes in VBASE2 and the final protocol presents an optimised combination of commercial enzymes and reaction additives for cDNA synthesis and PCR conditions for V-gene amplification. Finally, applying this protocol in combination with different immunoglobulin (Ig) chain specific reverse primers we were able to amplify rearranged antibody genes of different isotypes under investigation.
PLOS ONE | 2012
Florian Rubelt; Volker Sievert; Florian Knaust; Christian Diener; Theam Soon Lim; Karl Skriner; Edda Klipp; Richard Reinhardt; Hans Lehrach; Zoltán Konthur
The immune system protects us from foreign substances or pathogens by generating specific antibodies. The variety of immunoglobulin (Ig) paratopes for antigen recognition is a result of the V(D)J rearrangement mechanism, while a fast and efficient immune response is mediated by specific immunoglobulin isotypes obtained through class switch recombination (CSR). To get a better understanding on how antibody-based immune protection works and how it changes with age, the interdependency between these two parameters need to be addressed. Here, we have performed an in depth analysis of antibody repertoires of 14 healthy donors representing different gender and age groups. For this task, we developed a unique pyrosequencing approach, which is able to monitor the expression levels of all immunoglobulin V(D)J recombinations of all isotypes including subtypes in an unbiased and quantitative manner. Our results show that donors have individual immunoglobulin repertoires and cannot be clustered according to V(D)J recombination patterns, neither by age nor gender. However, after incorporating isotype-specific analysis and considering CSR information into hierarchical clustering the situation changes. For the first time the donors cluster according to age and separate into young adults and elderly donors (>50). As a direct consequence, this clustering defines the onset of immune senescence at the age of fifty and beyond. The observed age-dependent reduction of CSR ability proposes a feasible explanation why reduced efficacy of vaccination is seen in the elderly and implies that novel vaccine strategies for the elderly should include the “Golden Agers”.
BioTechniques | 2012
Bee Nar Lim; Yee Siew Choong; Asma Ismail; Jörn Glökler; Zoltán Konthur; Theam Soon Lim
Directed evolution of nucleotide libraries using recombination or mutagenesis is an important technique for customizing catalytic or biophysical traits of proteins. Conventional directed evolution methods, however, suffer from cumbersome digestion and ligation steps. Here, we describe a simple method to increase nucleotide diversity using single-stranded DNA (ssDNA) as a starting template. An initial PCR amplification using phosphorylated primers with overlapping regions followed by treatment with lambda exonuclease generates ssDNA templates that can then be annealed via the overlap regions. Double-stranded DNA (dsDNA) is then generated through extension with Klenow fragment. To demonstrate the applicability of this methodology for directed evolution of nucleotide libraries, we generated both gene shuffled and regional mutagenesis synthetic antibody libraries with titers of 2×108 and 6×107, respectively. We conclude that our method is an efficient and convenient approach to generate diversity in nucleic acid based libraries, especially recombinant antibody libraries.
Clinical & Developmental Immunology | 2015
Gee Jun Tye; Min Han Lew; Yee Siew Choong; Theam Soon Lim; María Elena Sarmiento; Armando Acosta; Mohd Nor Norazmi
Development of vaccines for infectious diseases has come a long way with recent advancements in adjuvant developments and discovery of new antigens that are capable of eliciting strong immunological responses for sterile eradication of disease. Tuberculosis (TB) that kills nearly 2 million of the population every year is also one of the highlights of the recent developments. The availability or not of diagnostic methods for infection has implications for the control of the disease by the health systems but is not related to the immune surveillance, a phenomenon derived from the interaction between the bacteria and their host. Here, we will review the immunology of TB and current vaccine candidates for TB. Current strategies of developing new vaccines against TB will also be reviewed in order to further discuss new insights into immunotherapeutic approaches involving adjuvant and antigens combinations that might be of potential for the control of TB.
Scientific Reports | 2016
Nur Faezee Ismail; Theam Soon Lim
Antibody labelling to reporter molecules is gaining popularity due to its many potential applications for diagnostics and therapeutics. However, non-directional bioconjugation methods which are commonly used often results in the loss of target binding capabilities. Therefore, a site-specific enzymatic based bioconjugation such as sortase-mediated transpeptidation allows for a more rapid and efficient method of antibody conjugation for diagnostic applications. Here we describe the utilization of sortase A bioconjugation to conjugate a single chain fragment variable (scFv) to the extracellular invertase (invB) from Zymomonas mobilis with the aim of developing an invertase based immunoassay. In addition, conjugation to enhanced green fluorescent protein (eGFP) was also validated to show the flexibility of the method. The invertase conjugated complex was successfully applied for the detection of antibody-antigen interaction using a personal glucose meter (PGM) for assay readout. The setup was used in both a direct and competitive assay highlighting the robustness of the conjugate for assay development. The method provides an alternative conjugation process to allow easy exchange of antibodies to facilitate rapid development of diagnostic assays for various diseases on the PGM platform.
International Journal of Molecular Sciences | 2014
Bee Yin Khor; Gee Jun Tye; Theam Soon Lim; Rahmah Noordin; Yee Siew Choong
Brugia malayi is a filarial nematode, which causes lymphatic filariasis in humans. In 1995, the disease has been identified by the World Health Organization (WHO) as one of the second leading causes of permanent and long-term disability and thus it is targeted for elimination by year 2020. Therefore, accurate filariasis diagnosis is important for management and elimination programs. A recombinant antigen (BmR1) from the Bm17DIII gene product was used for antibody-based filariasis diagnosis in “Brugia Rapid”. However, the structure and dynamics of BmR1 protein is yet to be elucidated. Here we study the three dimensional structure and dynamics of BmR1 protein using comparative modeling, threading and ab initio protein structure prediction. The best predicted structure obtained via an ab initio method (Rosetta) was further refined and minimized. A total of 5 ns molecular dynamics simulation were performed to investigate the packing of the protein. Here we also identified three epitopes as potential antibody binding sites from the molecular dynamics average structure. The structure and epitopes obtained from this study can be used to design a binder specific against BmR1, thus aiding future development of antigen-based filariasis diagnostics to complement the current diagnostics.
Scientific Reports | 2017
Jens Fischbach; Frank F. Bier; Theam Soon Lim; Marcus Frohme; Jörn Glökler
We identified Alizarin Red S and other well known fluorescent dyes useful for the online detection of pyrophosphate in enzymatic assays, including the loop mediated isothermal amplification (LAMP) and polymerase chain reaction (PCR) assays. An iterative screening was used for a selected set of compounds to first secure enzyme compatibility, evaluate inorganic pyrophosphate sensitivity in the presence of manganese as quencher and optimize conditions for an online detection. Of the selected dyes, the inexpensive alizarin red S was found to selectively detect pyrophosphate under LAMP and PCR conditions and is superior with respect to its defined red-shifted spectrum, long shelf life and low toxicity. In addition, the newly identified properties may also be useful in other enzymatic assays which do not generate nucleic acids but are based on inorganic pyrophosphate. Finally, we propose that our screening method may provide a blueprint for rapid screening of compounds for detecting inorganic pyrophosphate.
International Journal of Molecular Sciences | 2017
Anizah Rahumatullah; Izzati Zahidah Abdul Karim; Rahmah Noordin; Theam Soon Lim
Helminth parasite infections are significantly impacting global health, with more than two billion infections worldwide with a high morbidity rate. The complex life cycle of the nematodes has made host immune response studies against these parasites extremely difficult. In this study, we utilized two phage antibody libraries; the immune and naïve library were used to identify single chain fragment variable (scFv) clones against a specific filarial antigen (BmR1). The V-gene analysis of isolated scFv clones will help shed light on preferential VDJ gene segment usage against the filarial BmR1 antigen in healthy and infected states. The immune library showed the usage of both lambda and kappa light chains. However, the naïve library showed preferential use of the lambda family with different amino acid distributions. The binding characteristics of the scFv clones identified from this work were analyzed by immunoassay and immunoaffinity pull down of BmR1. The work highlights the antibody gene usage pattern of a naïve and immune antibody library against the same antigen as well as the robust nature of the enriched antibodies for downstream applications.
Current Pharmaceutical Design | 2017
Theam Soon Lim; Soo Khim Chan
BACKGROUNDnAntibody phage display is highly dependent on the availability of antibody libraries. There are several forms of libraries depending mainly on the origin of the source materials. There are three major classes of libraries, mainly the naïve, immune and synthetic libraries.nnnMETHODSnImmune antibody libraries are designed to isolate specific and high affinity antibodies against disease antigens. The pre-exposure of the host to an infection results in the production of a skewed population of antibodies against the particular infection.nnnRESULTSnThis characteristic takes advantage of the in vivo editing machinery to generate bias and specific immune repertoire. The skewed but diverse repertoire of immune libraries has been adapted successfully in the generation of antibodies against a wide range of diseases.nnnCONCLUSIONnWe envisage immune antibody libraries to play a greater role in the discovery of antibodies for diseases in the near future.
Archive | 2016
Angela Chiew Wen Ch’ng; Yee Siew Choong; Theam Soon Lim
Antibodies are produced by the human body in response towards infections as a means of protection. The in vivo production of antibodies by B-cells involves a series of intricate gene editing processes resulting in a highly diverse pool of antibodies. However, this diversity can be replicated in vitro using phage display. Phage display offers the potential to present the antibody phenotype together with the cloned genotype of the specific antibody in a single-phage particle. Antibodies are highly sought after for diagnostic applications owing to its specificity and affinity towards a target antigen. The advent of recombinant antibody (rAb) technology allows for a faster and more costeffective solution for antibody generation. It also provides diagnostic developers with the possibility to customize the antibodies. Antibodies have been utilized successfully in various diagnostic platforms ranging from standard immunoassays to lateral-flow assays, nanoparticles, microfluidics, DNA‐integrated assays and others. The limitless application of antibodies in the field of diagnostics has made it a critical component in any diagnostic development platform. This chapter focuses on the processes involved in antibody discovery including the various forms of antibody libraries for phage display and panning processes. We also highlight some diagnostic platforms that apply recombinant antibodies.