Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Theo S. Plantinga is active.

Publication


Featured researches published by Theo S. Plantinga.


The New England Journal of Medicine | 2009

Human Dectin-1 Deficiency and Mucocutaneous Fungal Infections

Bart Ferwerda; Gerben Ferwerda; Theo S. Plantinga; Janet A. Willment; Annemiek B. van Spriel; Hanka Venselaar; Clara C. Elbers; Melissa D. Johnson; Alessandra Cambi; Cristal Huysamen; Liesbeth Jacobs; Trees Jansen; Karlijn Verheijen; Laury Masthoff; Servaas A. Morré; Gert Vriend; David L. Williams; John R. Perfect; Leo A. B. Joosten; Cisca Wijmenga; Jos W. M. van der Meer; Gosse J. Adema; Bart Jan Kullberg; Gordon D. Brown; Mihai G. Netea

Mucocutaneous fungal infections are typically found in patients who have no known immune defects. We describe a family in which four women who were affected by either recurrent vulvovaginal candidiasis or onychomycosis had the early-stop-codon mutation Tyr238X in the beta-glucan receptor dectin-1. The mutated form of dectin-1 was poorly expressed, did not mediate beta-glucan binding, and led to defective production of cytokines (interleukin-17, tumor necrosis factor, and interleukin-6) after stimulation with beta-glucan or Candida albicans. In contrast, fungal phagocytosis and fungal killing were normal in the patients, explaining why dectin-1 deficiency was not associated with invasive fungal infections and highlighting the specific role of dectin-1 in human mucosal antifungal defense.


The New England Journal of Medicine | 2011

STAT1 Mutations in Autosomal Dominant Chronic Mucocutaneous Candidiasis

Frank L. van de Veerdonk; Theo S. Plantinga; Alexander Hoischen; Sanne P. Smeekens; Leo A. B. Joosten; Christian Gilissen; Peer Arts; Diana C. Rosentul; Andrew J. Carmichael; Chantal A.A. Smits-van der Graaf; Bart Jan Kullberg; Jos W. M. van der Meer; Desa Lilic; Joris A. Veltman; Mihai G. Netea

BACKGROUND Chronic mucocutaneous candidiasis (CMC) is characterized by susceptibility to candida infection of skin, nails, and mucous membranes. Patients with recessive CMC and autoimmunity have mutations in the autoimmune regulator AIRE. The cause of autosomal dominant CMC is unknown. METHODS We evaluated 14 patients from five families with autosomal dominant CMC. We incubated their peripheral-blood mononuclear cells with different combinations of stimuli to test the integrity of pathways that mediate immunity, which led to the selection of 100 genes that were most likely to contain the genetic defect. We used an array-based sequence-capture assay, followed by next-generation sequencing, to identify mutations. RESULTS The mononuclear cells from the affected patients were characterized by poor production of interferon-γ, interleukin-17, and interleukin-22, suggesting that the defect lay within the interleukin-12 receptor and interleukin-23 receptor signaling pathways. We identified heterozygous missense mutations in the DNA sequence encoding the coiled-coil (CC) domain of signal transducer and activator of transcription 1 (STAT1) in the patients. These mutations lead to defective responses in type 1 and type 17 helper T cells (Th1 and Th17). The interferon-γ receptor pathway was intact in these patients. CONCLUSIONS Mutations in the CC domain of STAT1 underlie autosomal dominant CMC and lead to defective Th1 and Th17 responses, which may explain the increased susceptibility to fungal infection. (Funded by the Netherlands Organization for Scientific Research and others.).


Clinical Infectious Diseases | 2009

Early stop polymorphism in human DECTIN-1 is associated with increased candida colonization in hematopoietic stem cell transplant recipients.

Theo S. Plantinga; Walter J.F.M. van der Velden; Bart Ferwerda; Annemiek B. van Spriel; Gosse J. Adema; Ton Feuth; J. Peter Donnelly; Gordon D. Brown; Bart Jan Kullberg; N.M.A. Blijlevens; Mihai G. Netea

Background. Intensive treatment of hematological malignancies with hematopoietic stem cell transplantation (HSCT) is accompanied by a high incidence of opportunistic invasive fungal infection, but individual risk varies significantly. Dectin-1, a C-type lectin that recognizes 1,3-beta-glucans from fungal pathogens, including Candida species, is involved in the initiation of the immune response against fungi. Methods. Screening for the DECTIN-1 Y238X polymorphism within a group of 142 patients undergoing HSCT was correlated with Candida colonization and candidemia. Furthermore, functional studies were performed on the consequences of the polymorphism. Results. Patients bearing the Y238X polymorphism in the DECTIN-1 gene were more likely to be colonized with Candida species, compared with patients bearing wild-type DECTIN-1, necessitating more frequent use of fluconazole in the prevention of systemic Candida infection. Functional assays demonstrated a loss-of-function phenotype of the polymorphism, as shown by the decreased cytokine production by immune cells bearing this polymorphism. Conclusions. The Y238X polymorphism is associated with increased oral and gastrointestinal colonization with Candida species. This suggests a crucial role played by dectin-1 in the mucosal antifungal mechanisms in immunocompromised hosts. The finding that DECTIN-1 polymorphisms rendered HSCT recipients at increased risk for fungal complications may contribute to the selection of high-risk patients who should be considered for antifungal prophylaxis to prevent systemic candidiasis.


Proceedings of the National Academy of Sciences of the United States of America | 2014

IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans

Antonella De Luca; Sanne P. Smeekens; Andrea Casagrande; Rossana G. Iannitti; Kara L. Conway; Mark S. Gresnigt; Jakob Begun; Theo S. Plantinga; Leo A. B. Joosten; Jos W. M. van der Meer; Georgios Chamilos; Mihai G. Netea; Ramnik J. Xavier; Charles A. Dinarello; Luigina Romani; Frank L. van de Veerdonk

Significance Chronic granulomatous disease (CGD) has an immunodeficiency component and, in addition, an autoinflammatory component in which autophagy and inflammasome activation are linked and amenable to IL-1 blockade. This study provides a rationale to perform clinical trials to investigate the efficacy of blocking IL-1 in CGD colitis and expands the therapeutic potential of IL-1 antagonists to inflammatory diseases with defective autophagy. Patients with chronic granulomatous disease (CGD) have a mutated NADPH complex resulting in defective production of reactive oxygen species; these patients can develop severe colitis and are highly susceptible to invasive fungal infection. In NADPH oxidase-deficient mice, autophagy is defective but inflammasome activation is present despite lack of reactive oxygen species production. However, whether these processes are mutually regulated in CGD and whether defective autophagy is clinically relevant in patients with CGD is unknown. Here, we demonstrate that macrophages from CGD mice and blood monocytes from CGD patients display minimal recruitment of microtubule-associated protein 1 light chain 3 (LC3) to phagosomes. This defect in autophagy results in increased IL-1β release. Blocking IL-1 with the receptor antagonist (anakinra) decreases neutrophil recruitment and T helper 17 responses and protects CGD mice from colitis and also from invasive aspergillosis. In addition to decreased inflammasome activation, anakinra restored autophagy in CGD mice in vivo, with increased Aspergillus-induced LC3 recruitment and increased expression of autophagy genes. Anakinra also increased Aspergillus-induced LC3 recruitment from 23% to 51% (P < 0.01) in vitro in monocytes from CGD patients. The clinical relevance of these findings was assessed by treating CGD patients who had severe colitis with IL-1 receptor blockade using anakinra. Anakinra treatment resulted in a rapid and sustained improvement in colitis. Thus, inflammation in CGD is due to IL-1–dependent mechanisms, such as decreased autophagy and increased inflammasome activation, which are linked pathological conditions in CGD that can be restored by IL-1 receptor blockade.


Gut | 2011

Crohn's disease-associated ATG16L1 polymorphism modulates pro-inflammatory cytokine responses selectively upon activation of NOD2

Theo S. Plantinga; T. O. Crisan; Marije Oosting; F.L. van de Veerdonk; D.J. de Jong; Dana J. Philpott; J.W.M. van der Meer; Stephen E. Girardin; L.A.B. Joosten; Mihai G. Netea

Objective Autophagy has recently been shown to modulate the production of pro-inflammatory cytokine production and to contribute to antigen processing and presentation through the major histocompatibility complex. Genetic variation in the autophagy gene ATG16L1 has been recently implicated in Crohns disease pathogenesis. The mechanisms underlying this association are not yet known, although experimental models suggest an inhibitory effect of autophagy on interleukin 1β (IL-1β) responses. Here, the effect of ATG16L1 genetic variation on cytokine responses has been assessed in humans. Design and setting Peripheral blood mononuclear cells from healthy individuals and patients with Crohns disease with different ATG16L1 genotypes were stimulated with ligands for Toll-like receptor 2 (TLR2), TLR4 and nucleotide-binding oligomerisation domain 2 (NOD2), with or without the autophagy inhibitor 3-methyladenine. Induction of cytokine production and related factors were measured at the mRNA and protein level. Furthermore, protein levels of ATG16L1 were assessed by western blot. Results The present study demonstrates that cells isolated from individuals bearing the ATG16L1 Thr300Ala risk variant, which is shown to affect ATG16L1 protein expression upon NOD2 stimulation, display increased production of the pro-inflammatory cytokines IL-1β and IL-6, specifically after stimulation with NOD2 ligands. In contrast, no differences were found when cells were stimulated with TLR2 or TLR4 agonists. These findings were confirmed in two independent cohorts of volunteers and in a group of patients with Crohns disease. The increased production could be ascribed to increased mRNA expression, while processing of pro-IL-1β by caspase-1 activation was not affected. The effect of the ATG16L1 polymorphism was abrogated when autophagy was blocked. Conclusions The present study is the first to link the ATG16L1 polymorphism with an excessive production of IL-1β and IL-6 in humans, which may explain the effects of this polymorphism on the inflammatory process in Crohns disease.


Journal of Leukocyte Biology | 2011

The dectin-1/inflammasome pathway is responsible for the induction of protective T-helper 17 responses that discriminate between yeasts and hyphae of Candida albicans

Shih-Chin Cheng; Frank L. van de Veerdonk; Megan D. Lenardon; Monique Stoffels; Theo S. Plantinga; Sanne P. Smeekens; Lisa Rizzetto; Liliane Mukaremera; Kanya Preechasuth; Duccio Cavalieri; Thirumala-Devi Kanneganti; Jos W. M. van der Meer; Bart Jan Kullberg; Leo A. B. Joosten; Neil A. R. Gow; Mihai G. Netea

In the mucosa, the immune pathways discriminating between colonizing and invasive Candida, thus inducing tolerance or inflammation, are poorly understood. Th17 responses induced by Candida albicans hyphae are central for the activation of mucosal antifungal immunity. An essential step for the discrimination between yeasts and hyphae and induction of Th17 responses is the activation of the inflammasome by C. albicans hyphae and the subsequent release of active IL‐1β in macrophages. Inflammasome activation in macrophages results from differences in cell‐wall architecture between yeasts and hyphae and is partly mediated by the dectin‐1/Syk pathway. These results define the dectin‐1/inflammasome pathway as the mechanism that enables the host immune system to mount a protective Th17 response and distinguish between colonization and tissue invasion by C. albicans.


Nature Genetics | 2012

Discovery of common variants associated with low TSH levels and thyroid cancer risk

Julius Gudmundsson; Patrick Sulem; Daniel F. Gudbjartsson; Jon G. Jonasson; Gisli Masson; Huiling He; Aslaug Jonasdottir; Asgeir Sigurdsson; Simon N. Stacey; Hrefna Johannsdottir; Hafdis T. Helgadottir; Wei Li; Rebecca Nagy; Matthew D. Ringel; Richard T. Kloos; Marieke de Visser; Theo S. Plantinga; Martin den Heijer; Esperanza Aguillo; Angeles Panadero; Enrique Prats; Almudena Garcia-Castaño; Ana de Juan; Fernando Rivera; G. Bragi Walters; Hjordis Bjarnason; Laufey Tryggvadottir; Gudmundur I. Eyjolfsson; Unnur S. Bjornsdottir; Hilma Holm

To search for sequence variants conferring risk of nonmedullary thyroid cancer, we focused our analysis on 22 SNPs with a P < 5 × 10−8 in a genome-wide association study on levels of thyroid stimulating hormone (TSH) in 27,758 Icelanders. Of those, rs965513 has previously been shown to associate with thyroid cancer. The remaining 21 SNPs were genotyped in 561 Icelandic individuals with thyroid cancer (cases) and up to 40,013 controls. Variants suggestively associated with thyroid cancer (P < 0.05) were genotyped in an additional 595 non-Icelandic cases and 2,604 controls. After combining the results, three variants were shown to associate with thyroid cancer: rs966423 on 2q35 (OR = 1.34; Pcombined = 1.3 × 10−9), rs2439302 on 8p12 (OR = 1.36; Pcombined = 2.0 × 10−9) and rs116909374 on 14q13.3 (OR = 2.09; Pcombined = 4.6 × 10−11), a region previously reported to contain an uncorrelated variant conferring risk of thyroid cancer. A strong association (P = 9.1 × 10−91) was observed between rs2439302 on 8p12 and expression of NRG1, which encodes the signaling protein neuregulin 1, in blood.


PLOS ONE | 2011

Inflammasome-independent modulation of cytokine response by autophagy in human cells

Tania O. Crişan; Theo S. Plantinga; Frank L. van de Veerdonk; Marius F. Farcaş; Monique Stoffels; Bart Jan Kullberg; Jos W. M. van der Meer; Leo A. B. Joosten; Mihai G. Netea

Autophagy is a cell housekeeping mechanism that has recently received attention in relation to its effects on the immune response. Genetic studies have identified candidate loci for Crohns disease susceptibility among autophagy genes, while experiments in murine macrophages from ATG16L1 deficient mice have shown that disruption of autophagy increases processing of IL-1β and IL-18 through an inflammasome-dependent manner. Using complementary approaches either inducing or inhibiting autophagy, we describe modulatory effects of autophagy on proinflammatory cytokine production in human cells. Inhibition of basal autophagy in human peripheral blood mononuclear cells (PBMCs) significantly enhances IL-1β after stimulation with TLR2 or TLR4 ligands, while at the same time reducing the production of TNFα. In line with this, induction of autophagy by starvation inhibited IL-1β production. These effects of autophagy were not exerted at the processing step, as inflammasome activation was not influenced. In contrast, the effect of autophagy on cytokine production was on transcription level, and possibly involving the inhibition of p38 mitogen activated protein kinase (MAPK) phosphorylation. In conclusion, autophagy modulates the secretion of proinflammatory cytokines in human cells through an inflammasome-independent pathway, and this is a novel mechanism that may be targeted in inflammatory diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Human TLR10 is an anti-inflammatory pattern-recognition receptor

Marije Oosting; Shih-Chin Cheng; Judith M. Bolscher; Rachel Vestering-Stenger; Theo S. Plantinga; Ineke Verschueren; Peer Arts; Anja Garritsen; Hans van Eenennaam; Patrick Sturm; Bart Jan Kullberg; Alexander Hoischen; Gosse J. Adema; Jos W. M. van der Meer; Mihai G. Netea; Leo A. B. Joosten

Significance We demonstrate the biological role of TLR10, the only member of the Toll-like receptor (TLR)-family so far without a known function. We show that TLR10 acts as an inhibitory receptor, with suppressive effects. Blocking TLR10 by specific antibodies significantly upregulated TLR2-mediated cytokine production. Additionally, we show that individuals carrying loss-of-function SNPs in TLR10 display upregulation of TLR2-mediated cytokine production. After challenging human TLR10 transgenic mice with TLR2 ligand pam3CSK4 (Pam3Cys), less inflammation could be observed when compared with wild-type mice. Taking these data together, we show that TLR10 is the only pattern-recognition receptor within the TLR family that is able to dampen TLR2 responses, thereby suppressing immune responses through production of IL-1Ra. Toll-like receptor (TLR)10 is the only pattern-recognition receptor without known ligand specificity and biological function. We demonstrate that TLR10 is a modulatory receptor with mainly inhibitory effects. Blocking TLR10 by antagonistic antibodies enhanced proinflammatory cytokine production, including IL-1β, specifically after exposure to TLR2 ligands. Blocking TLR10 after stimulation of peripheral blood mononuclear cells with pam3CSK4 (Pam3Cys) led to production of 2,065 ± 106 pg/mL IL-1β (mean ± SEM) in comparison with 1,043 ± 51 pg/mL IL-1β after addition of nonspecific IgG antibodies. Several mechanisms mediate the modulatory effects of TLR10: on the one hand, cotransfection in human cell lines showed that TLR10 acts as an inhibitory receptor when forming heterodimers with TLR2; on the other hand, cross-linking experiments showed specific induction of the anti-inflammatory cytokine IL-1 receptor antagonist (IL-1Ra, 16 ± 1.7 ng/mL, mean ± SEM). After cross-linking anti-TLR10 antibody, no production of IL-1β and other proinflammatory cytokines could be found. Furthermore, individuals bearing TLR10 polymorphisms displayed an increased capacity to produce IL-1β, TNF-α, and IL-6 upon ligation of TLR2, in a gene-dose–dependent manner. The modulatory effects of TLR10 are complex, involving at least several mechanisms: there is competition for ligands or for the formation of heterodimer receptors with TLR2, as well as PI3K/Akt-mediated induction of the anti-inflammatory cytokine IL-1Ra. Finally, transgenic mice expressing human TLR10 produced fewer cytokines when challenged with a TLR2 agonist. In conclusion, to our knowledge we demonstrate for the first time that TLR10 is a modulatory pattern-recognition receptor with mainly inhibitory properties.


Journal of Clinical Investigation | 2013

CX3CR1-dependent renal macrophage survival promotes Candida control and host survival

Michail S. Lionakis; Muthulekha Swamydas; Brett G. Fischer; Theo S. Plantinga; Melissa D. Johnson; Martin Jaeger; Nathaniel M. Green; Andrius Masedunskas; Roberto Weigert; Constantinos M. Mikelis; Wuzhou Wan; Chyi Chia Richard Lee; Jean K. Lim; Aymeric Rivollier; John C. Yang; Greg M. Laird; Robert T. Wheeler; Barbara D. Alexander; John R. Perfect; Ji Liang Gao; Bart Jan Kullberg; Mihai G. Netea; Philip M. Murphy

Systemic Candida albicans infection causes high morbidity and mortality and is associated with neutropenia; however, the roles of other innate immune cells in pathogenesis are poorly defined. Here, using a mouse model of systemic candidiasis, we found that resident macrophages accumulated in the kidney, the main target organ of infection, and formed direct contacts with the fungus in vivo mainly within the first few hours after infection. Macrophage accumulation and contact with Candida were both markedly reduced in mice lacking chemokine receptor CX3CR1, which was found almost exclusively on resident macrophages in uninfected kidneys. Infected Cx3cr1-/- mice uniformly succumbed to Candida-induced renal failure, but exhibited clearance of the fungus in all other organs tested. Renal macrophage deficiency in infected Cx3cr1-/- mice was due to reduced macrophage survival, not impaired proliferation, trafficking, or differentiation. In humans, the dysfunctional CX3CR1 allele CX3CR1-M280 was associated with increased risk of systemic candidiasis. Together, these data indicate that CX3CR1-mediated renal resident macrophage survival is a critical innate mechanism of early fungal control that influences host survival in systemic candidiasis.

Collaboration


Dive into the Theo S. Plantinga's collaboration.

Top Co-Authors

Avatar

Mihai G. Netea

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Leo A. B. Joosten

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bart Jan Kullberg

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marije Oosting

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge