Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Theodore H. Elsasser is active.

Publication


Featured researches published by Theodore H. Elsasser.


Infection and Immunity | 2003

Recombinant Soluble CD14 Reduces Severity of Intramammary Infection by Escherichia coli

Jai-Wei Lee; Max Paape; Theodore H. Elsasser; Xin Zhao

ABSTRACT The interaction among gram-negative bacteria, the innate immune system, and soluble CD14 (sCD14) has not been well documented. The effect of recombinant bovine sCD14 (rbosCD14) on milk somatic cell count (SCC), bacterial clearance, and cytokine production was investigated by using a bovine intramammary Escherichia coli infection model. We first determined whether rbosCD14 would increase the SCC during a lipopolysaccharide (LPS) challenge. Three quarters of each of six healthy lactating cows were injected with either 0.3 μg of LPS, 0.3 μg of LPS plus 100 μg of rbosCD14, or saline. In comparison with quarters injected with LPS alone, the SCC was twofold higher (P < 0.05) in quarters injected with LPS plus rbosCD14 after the challenge. We therefore hypothesized that when E. coli bacteria invade the mammary gland, sCD14 in milk would interact with LPS and rapidly recruit neutrophils from the blood to eliminate the bacteria before establishment of infection. To test this hypothesis, two quarters of each of nine healthy cows were challenged with either 50 CFU of E. coli plus saline or 50 CFU of E. coli plus 100 μg of rbosCD14. Quarters challenged with E. coli plus rbosCD14 had a more rapid recruitment of neutrophils, which was accompanied by a faster clearance of bacteria, lower concentrations of tumor necrosis factor alpha and interleukin-8 in milk, and milder clinical symptoms, than challenged quarters injected with saline. Results indicate that increasing the concentration of sCD14 in milk may be a potential strategy with which to prevent or reduce the severity of infection by coliform bacteria.


Animal Biotechnology | 2004

Growth and Tissue Accretion Rates of Swine Expressing an Insulin-like Growth Factor I Transgene

Vernon G. Pursel; Alva D. Mitchell; G. Bee; Theodore H. Elsasser; John P. McMurtry; Robert Wall; M. E. Coleman; R. J. Schwartz

Abstract The goal of this research was to determine whether directing expression of an insulin-like growth factor I (IGF-I) transgene specifically to striated muscle would alter the growth characteristics in swine. Transgenic pigs were produced with a fusion gene composed of avian skeletal α-actin regulatory sequences and a cDNA encoding human IGF-I. Six founder transgenic pigs were mated to nontransgenic pigs to produce 11 litters of G1 transgenic and sibling control progeny. Birth weight, weaning weight, and proportion of pig survival did not differ between transgenic and control pigs. The ADG of pigs as they grew incrementally from 20 to 60 kg, 60 to 90 kg, and 90 to 120 kg, respectively, did not significantly differ between transgenic and control pigs. Efficiency of feed utilization (gain:feed) was also similar for transgenic and control pigs. Plasma IGF-I and porcine growth hormone (pGH) concentrations were determined at 60, 90, and 120 kg body weight. Plasma IGF-I concentrations were 19% higher in transgenic gilts than control gilts and 11.1% higher in transgenic boars than control boars (P = 0.0005). Plasma IGF-I concentrations for boars were also higher than for gilts (P = 0.0001). At 60, 90, and 120 kg body weight each pig was scanned by dual energy X-ray absorptiometry (DXA) to derive comparative estimates of carcass fat, lean, bone content of the live animal. Control pigs had more fat and less lean tissue than transgenic pigs at each of the scanning periods and the difference became more pronounced as the pigs grew heavier (P < 0.005 at each weight). Transgenic pigs also had a slightly lower percentage of bone than control pigs (P < 0.05 at each weight). While daily rates of lean tissue accretion did not differ for transgenic and control pigs, daily rates of fat accretion were lower in transgenic pigs than in control pigs (P < 0.05). Based on these results we conclude that expression of IGF-I in the skeletal muscles gradually altered body composition as pigs became older but did not have a major affect on growth performance. #Mention of trade names or companies does not constitute an implied warranty or endorsement by the USDA or the authors.


BMC Genomics | 2008

Effects of increased milking frequency on gene expression in the bovine mammary gland

E.E. Connor; Stephen Siferd; Theodore H. Elsasser; C.M. Evock-Clover; Curtis P. Van Tassell; Tad S. Sonstegard; Violet M Fernandes; Anthony Capuco

BackgroundPrevious research has demonstrated that increased milking frequency of dairy cattle during the first few weeks of lactation enhances milk yield, and that the effect persists throughout the entire lactation period. The specific mechanisms controlling this increase in milk production are unknown, but suggested pathways include increased mammary epithelial cell number, secretory capacity, and sensitivity to lactogenic hormones. We used serial analysis of gene expression (SAGE) and microarray analysis to identify changes in gene expression in the bovine mammary gland in response to 4× daily milking beginning at d 4 of lactation (IMF4) relative to glands milked 2× daily (Control) to gain insight into physiological changes occurring within the gland during more frequent milking.ResultsResults indicated changes in gene expression related to cell proliferation and differentiation, extracellular matrix (ECM) remodeling, metabolism, nutrient transport, and immune function in IMF4 versus Control cows. In addition, pathways expected to promote neovascularization within the gland appeared to be up regulated in IMF4 cows. To validate this finding, immunolocalization of Von Willebrandts factor (VWF), an endothelial cell marker, and its co-localization with the nuclear proliferation antigen Ki67 were evaluated in mammary tissue sections at approximately d 7 and d 14 of lactation in cows milked 4× daily versus Controls to estimate endothelial cell abundance and proliferation within the gland. Consistent with expression of genes related to neovascularization, both abundance of VWF and its co-localization with Ki67 appeared to be elevated in cows milked 4× daily, suggesting persistent increased milk yield in response to increased milking frequency may be mediated or complemented by enhanced mammary ECM remodeling and neovascularization within the gland.ConclusionAdditional study is needed to determine whether changes in ECM remodeling and neovascularization of the mammary gland result in increased milk yield during increased milking frequency, or occur in response to an increased demand for milk production. Gene pathways identified by the current study will provide a basis for future investigations to identify factors mediating the effects of milking frequency on milk yield.


Journal of Dairy Science | 2008

Limit-feeding a high-energy diet to meet energy requirements in the dry period alters plasma metabolite concentrations but does not affect intake or milk production in early lactation.

L.A. Winkelman; Theodore H. Elsasser; C.K. Reynolds

Limit-feeding dry cows a high-energy diet may enable adequate energy intake to be sustained as parturition approaches, thus reducing the extent of negative energy balance after parturition. Our objective was to evaluate the effect of dry period feeding strategy on plasma concentrations of hormones and metabolites that reflect energy status. Multiparous Holstein cows (n = 18) were dried off 45 d before expected parturition, paired by expected calving date, parity, and previous lactation milk yield, and randomly assigned to 1 of 2 dry-period diets formulated to meet nutrient requirements at ad libitum or limited intakes. All cows were fed the same diet for ad libitum intake after parturition. Prepartum dry matter intake (DMI) for limit-fed cows was 9.4 kg/d vs. 13.7 kg/d for cows fed ad libitum. During the dry period, limit-fed cows consumed enough feed to meet calculated energy requirements, and ad libitum-fed cows were in positive calculated net energy for lactation (NE(L)) balance (0.02 vs. 6.37 Mcal/d, respectively). After parturition, milk yield, milk protein concentration, DMI, body condition score, and body weight were not affected by the prepartum treatments. Cows limit fed during the dry period had a less-negative calculated energy balance during wk 1 postpartum. Milk fat concentration and yield were greater for the ad libitum treatment during wk 1 but were lower in wk 2 and 3 postpartum. Plasma insulin and glucose concentrations decreased after calving. Plasma insulin concentration was greater in ad libitum-fed cows on d -2 relative to calving, but did not differ by dietary treatment at other times. Plasma glucose concentrations were lower before and after parturition for cows limit-fed during the dry period. Plasma nonesterified fatty acid concentrations peaked after parturition on d 1 and 4 for the limit-fed and ad libitum treatments, respectively, and were greater for limit-fed cows on d -18, -9, -5, and -2. Plasma tumor necrosis factor-alpha concentrations did not differ by treatment in either the pre- or postpartum period, but tended to decrease after parturition. Apart from a reduction in body energy loss in the first week after calving, limit feeding a higher NE(L) diet during the dry period had little effect on intake and milk production during the first month of lactation.


Veterinary Parasitology | 2009

Mucin biosynthesis in the bovine goblet cell induced by Cooperia oncophora infection

Robert W. Li; Congjun Li; Theodore H. Elsasser; George E. Liu; Wesley M. Garrett; Louis C. Gasbarre

Mucin hypersecretion is considered to be one of the most common components of the immune response to gastrointestinal nematode infection. However, investigations have not been conducted in the Cattle-Cooperia oncophora system to verify the findings largely derived from murine models. In this study, we examined the expression of seven mucins and seven enzymes in the mucin biosynthesis pathway involved in O-linked glycosylation in the bovine small intestine including goblet cells enriched using laser capture microdissection during a primary C. oncophora infection. At the mRNA level, MUC2 expression was significantly higher in both lamina propria and goblet cells at 28 days post-infection compared to the naive control. MUC5B expression at the mRNA level was also higher in lamina propria at 28dpi. Expression of MUC1, MUC4, MUC5AC, and MUC6 was extremely low or not detectable in goblet cells, columnar epithelial cells, and lamina propria from both naive control and infected animals. Among the seven enzymes involved in post-translational O-linked glycosylation of mucins, GCNT3, which may represent one of the key rate-limiting steps in mucin biosynthesis, was up-regulated in goblet cells, columnar epithelial cells, lamina propria, and gross small intestine tissue during the course of infection. Western blot analysis revealed that MUC2 glycoprotein was strongly induced by infection in both gross small intestine tissue and its mucosal layer. In contrast, the higher MUC5B protein expression was observed only in the mucosal layer. Immunohistochemistry provided further evidence of the mucin glycoprotein production and localization. Our results provided insight into regulation of mucin biosynthesis in various cell types in the bovine small intestine during gastrointestinal nematode infection and will facilitate our understanding of mucins and their role in immune response against parasitic nematodes.


Journal of Dairy Science | 2015

The effect of citrus-derived oil on bovine blood neutrophil function and gene expression in vitro

M. Garcia; Theodore H. Elsasser; Debabrata Biswas; K.M. Moyes

Research on the use of natural products to treat or prevent microbial invasion as alternatives to antibiotic use is growing. Polymorphonuclear leukocytes (PMNL) play a vital role with regard to the innate immune response that affects severity or duration of mastitis. To our knowledge, effect of cold-pressed terpeneless Valencia orange oil (TCO) on bovine PMNL function has not been elucidated. Therefore, the objective of this study was to investigate the effect of TCO on bovine blood PMNL chemotaxis and phagocytosis capabilities and the expression of genes involved in inflammatory response in vitro. Polymorphonuclear leukocytes were isolated from jugular blood of 12 Holstein cows in mid-lactation and were incubated with 0.0 or 0.01% TCO for 120min at 37°C and 5% CO2, and phagocytosis (2×10(6) PMNL) and chemotaxis (6×10(6) PMNL) assays were then performed in vitro. For gene expression, RNA was extracted from incubated PMNL (6×10(6) PMNL), and gene expression was analyzed using quantitative PCR. The supernatant was stored at -80°C for analysis of tumor necrosis factor-α. Data were analyzed using a general linear mixed model with cow and treatment (i.e., control or TCO) in the model statement. In vitro supplementation of 0.01% of TCO increased the chemotactic ability to IL-8 by 47%; however, migration of PMNL to complement 5a was not altered. Treatment did not affect the production of tumor necrosis factor-α by PMNL. Expression of proinflammatory genes (i.e., SELL, TLR4, IRAK1, TRAF6, and LYZ) coding for proteins was not altered by incubation of PMNL with TCO. However, downregulation of TLR2 [fold change (FC=treatment/control)=-2.14], NFKBIA (FC=1.82), IL1B (FC=-2.16), TNFA (FC=-9.43), and SOD2 (FC=-1.57) was observed for PMNL incubated with TCO when compared with controls. Interestingly, expression of IL10, a well-known antiinflammatory cytokine, was also downregulated (FC=-3.78), whereas expression of IL8 (FC=1.93), a gene coding for the cytokine IL-8 known for its chemotactic function, tended to be upregulated in PMNL incubated with TCO. Incubation of PMNL with TCO enhanced PMNL chemotaxis in vitro. The expression of genes involved in the inflammatory response was primarily downregulated. Results showed that 0.01% TCO did not impair the function of PMNL in vitro. Future studies investigating the use of TCO as an alternative therapy for treatment of mastitis, including dose and duration, for cows during lactation are warranted.


Gene regulation and systems biology | 2010

Alpha-Tocopherol Modulates Transcriptional Activities that Affect Essential Biological Processes in Bovine Cells.

Congjun Li; Robert W. Li; Theodore H. Elsasser

Using global expression profiling and pathway analysis on α-tocopherol-induced gene perturbation in bovine cells, this study has generated comprehensive information on the physiological functions of α-tocopherol. The data confirmed α-tocopherol is a potent regulator of gene expression and α-tocopherol possesses novel transcriptional activities that affect essential biological processes. The genes identified fall within a broad range of functional categories and provide the molecular basis for its distinctive effects. Enrichment analyses of gene regulatory networks indicate α-tocopherol alter the canonical pathway of lipid metabolism and transcription factors SREBP1 and SREBP2, (Sterol regulatory element binding proteins), which mediate the regulatory functions of lipid metabolism. Transcription factors HNF4-α (Hepatocyte nuclear factor 4), c-Myc, SP1 (Sp1 transcription factor), ESR1 (estrogen receptor 1, nuclear), and androgen receptor, along with several others, were centered as the hubs of transcription regulation networks. The data also provided direct evidence that α-tocopherol is involved in maintaining immuno-homeostasis through targeting the C3 (Complement Component 3) gene.


Journal of Dairy Science | 2008

Short Communication: Suppressor of Cytokine Signaling-2 mRNA Increases After Parturition in the Liver of Dairy Cows

L.A. Winkelman; M.C. Lucy; Theodore H. Elsasser; Joy L. Pate; C.K. Reynolds

After parturition, the somatotropic axis of the dairy cow is uncoupled, partly because of reduced concentration of liver-specific GH receptor (GHR) 1A. Estradiol-17 beta(E(2)) concentrations increase at parturition and E(2) upregulates suppressors of cytokine signaling-2 (SOCS-2) mRNA expression, potentially inhibiting GH signaling. Therefore, we hypothesized that SOCS-2 mRNA is upregulated after parturition. Multiparous Holstein cows (n = 18) were dried off 45 d before expected parturition and fed diets to meet nutrient requirements at ad libitum or limited dry matter intake during the dry period. All cows were fed the same diet ad libitum from calving until 4 wk after parturition. Blood samples were collected weekly and more frequently near parturition. Liver biopsies obtained at - 21, - 7, 2, and 28 d relative to parturition were assessed for SOCS-2 and GHR 1A mRNA by quantitative real-time reverse-transcription PCR. The relative amount of SOCS-2 mRNA increased after parturition with both treatments and was greater on d 2 for cows limit-fed during the dry period compared with cows fed at ad libitum dry matter intake. Plasma E(2) concentrations increased on d - 13, - 5 and 1 relative to parturition and the increases were greater in limit-fed cows. Plasma GH concentration was greater for limit-fed cows and increased after parturition in all cows. The amount of GHR 1A mRNA did not differ between diets but decreased on d 2. In addition to reduced GHR 1A, increased SOCS-2 mRNA after parturition, perhaps because of increased E(2), may further uncouple GH signaling in the liver of the transition dairy cow.


Journal of Dairy Science | 2015

Glucose supplementation has minimal effects on blood neutrophil function and gene expression in vitro

M. Garcia; Theodore H. Elsasser; Y. Qu; X. Zhu; K.M. Moyes

During early lactation, glucose availability is low and the effect of glucose supply on bovine polymorphonuclear leukocyte (PMNL) function is poorly understood. The objective of this study was to determine the effect of glucose supplementation on the function and transcriptomic inflammatory response of PMNL from cows in early and mid-lactation in vitro. Twenty Holstein cows in early (n=10; days in milk=17±3.1) and mid-lactation (n=10; days in milk=168±14.8) were used for this study. Jugular blood was analyzed for serum concentrations of nonesterified fatty acids, β-hydroxybutyrate, and glucose. Polymorphonuclear leukocytes were isolated and diluted using RPMI (basal glucose concentration was 7.2 mM) to different concentrations of PMNL/mL for phagocytosis, chemotaxis, gene expression, and medium analyses. Working solutions of glucose (0 or 4 mM of d-glucose) and lipopolysaccharide (0 or 50μg/mL) were added and tubes were incubated for 120 min at 37°C. Media were analyzed for concentrations of glucose and tumor necrosis factor-α (TNF-α). Data were analyzed in a randomized block (stage of lactation) design. Challenge with lipopolysaccharide increased the expression of the genes encoding for nuclear factor kappa B (NFKB1), IL-10 (IL10), IL1B, IL6, IL8, TNF-α (TNFA), glucose transporter 3 (SLC2A3), and the concentration of TNF-α in medium (147.3 vs. 72.5 pg/mL for lipopolysaccharide and control, respectively). Main effect of stage of lactation was minimal where the expression of IL10 increased for cows in early compared with cows in mid-lactation. After lipopolysaccharide challenge, cows in early lactation experienced more marked increases in the expression of IL6, TNFA, and IL8 when compared with cows in mid-lactation. Glucose supplementation had minimal effects on gene expression where glucose supplementation increased the expression of lysozyme (LYZ). Glucose supplementation increased PMNL phagocytosis but did not alter chemotaxis, morphology, or concentration of TNF-α in the medium. Under the conditions of the experiment, stage of lactation had minimal effects on PMNL response to glucose supply where only the expression of NFKB1 and the production of TNF-α were greater for cows in mid-lactation when compared with early lactation. Metabolic profiles for cows in early lactation did not parallel those for cows during the early postpartum period and may partly explain results for this study. Future studies investigating the effect of glucose supply on bovine PMNL function in vivo and how this may be altered by stage of lactation are warranted.


Gene regulation and systems biology | 2012

Alpha-Tocopherol Alters Transcription Activities that Modulates Tumor Necrosis Factor Alpha (TNF-α) Induced Inflammatory Response in Bovine Cells.

Congjun Li; Robert W. Li; Stanislaw Kahl; Theodore H. Elsasser

To further investigate the potential role of α-tocopherol in maintaining immuno-homeostasis in bovine cells (Madin-Darby bovine kidney epithelial cell line), we undertook in vitro experiments using recombinant TNF-α as an immuno-stimulant to simulate inflammation response in cells with or without α-tocopherol pre-treatment. Using microarray global-profiling and IPA (Ingenuity Pathways Analysis, Ingenuity® Systems, http://www.ingenuity.com) data analysis on TNF-α-induced gene perturbation in those cells, we focused on determining whether α-tocopherol treatment of normal bovine cells in a standard cell culture condition can modify cell’s immune response induced by TNF-α challenge. When three datasets were filtered and compared using IPA, there were a total of 1750 genes in all three datasets for comparison, 97 genes were common in all three sets; 615 genes were common in at least two datasets; there were 261 genes unique in TNF-α challenge, 399 genes were unique in α-tocopherol treatment, and 378 genes were unique in the α-tocopherol plus TNF-α treatment. TNF-α challenge induced significant change in gene expression. Many of those genes induced by TNF-α are related to the cells immune and inflammatory responses. The results of IPA data analysis showed that α-tocopherol-pretreatment of cells modulated cell’s response to TNF-α challenge. In most of the canonical pathways, α-tocopherol pretreatment showed the antagonistic effect against the TNF-α-induced pro-inflammatory responses. We concluded that α-tocopherol pre-treatment has a significant antagonistic effect that modulates the cell’s response to the TNF-α challenge by altering the gene expression activities of some important signaling molecules.

Collaboration


Dive into the Theodore H. Elsasser's collaboration.

Top Co-Authors

Avatar

Anthony Capuco

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Alva D. Mitchell

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Congjun Li

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Robert W. Li

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Stanislaw Kahl

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

C.M. Evock-Clover

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

G.E. Dahl

University of Florida

View shared research outputs
Top Co-Authors

Avatar

John P. McMurtry

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Max Paape

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge