Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Theodore J. Huppert is active.

Publication


Featured researches published by Theodore J. Huppert.


Applied Optics | 2009

HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain

Theodore J. Huppert; Solomon G. Diamond; Maria Angela Franceschini; David A. Boas

Near-infrared spectroscopy (NIRS) is a noninvasive neuroimaging tool for studying evoked hemodynamic changes within the brain. By this technique, changes in the optical absorption of light are recorded over time and are used to estimate the functionally evoked changes in cerebral oxyhemoglobin and deoxyhemoglobin concentrations that result from local cerebral vascular and oxygen metabolic effects during brain activity. Over the past three decades this technology has continued to grow, and today NIRS studies have found many niche applications in the fields of psychology, physiology, and cerebral pathology. The growing popularity of this technique is in part associated with a lower cost and increased portability of NIRS equipment when compared with other imaging modalities, such as functional magnetic resonance imaging and positron emission tomography. With this increasing number of applications, new techniques for the processing, analysis, and interpretation of NIRS data are continually being developed. We review some of the time-series and functional analysis techniques that are currently used in NIRS studies, we describe the practical implementation of various signal processing techniques for removing physiological, instrumental, and motion-artifact noise from optical data, and we discuss the unique aspects of NIRS analysis in comparison with other brain imaging modalities. These methods are described within the context of the MATLAB-based graphical user interface program, HomER, which we have developed and distributed to facilitate the processing of optical functional brain data.


NeuroImage | 2009

Real-time imaging of human brain function by near-infrared spectroscopy using an adaptive general linear model

A. Farras Abdelnour; Theodore J. Huppert

Near-infrared spectroscopy is a non-invasive neuroimaging method which uses light to measure changes in cerebral blood oxygenation associated with brain activity. In this work, we demonstrate the ability to record and analyze images of brain activity in real-time using a 16-channel continuous wave optical NIRS system. We propose a novel real-time analysis framework using an adaptive Kalman filter and a state-space model based on a canonical general linear model of brain activity. We show that our adaptive model has the ability to estimate single-trial brain activity events as we apply this method to track and classify experimental data acquired during an alternating bilateral self-paced finger tapping task.


NeuroImage | 2012

Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements.

Louis Gagnon; Meryem A. Yücel; Mathieu Dehaes; Robert J. Cooper; Katherine L. Perdue; Juliette Selb; Theodore J. Huppert; Richard D. Hoge; David A. Boas

Near-Infrared Spectroscopy (NIRS) measures the functional hemodynamic response occurring at the surface of the cortex. Large pial veins are located above the surface of the cerebral cortex. Following activation, these veins exhibit oxygenation changes but their volume likely stays constant. The back-reflection geometry of the NIRS measurement renders the signal very sensitive to these superficial pial veins. As such, the measured NIRS signal contains contributions from both the cortical region as well as the pial vasculature. In this work, the cortical contribution to the NIRS signal was investigated using (1) Monte Carlo simulations over a realistic geometry constructed from anatomical and vascular MRI and (2) multimodal NIRS-BOLD recordings during motor stimulation. A good agreement was found between the simulations and the modeling analysis of in vivo measurements. Our results suggest that the cortical contribution to the deoxyhemoglobin signal change (ΔHbR) is equal to 16-22% of the cortical contribution to the total hemoglobin signal change (ΔHbT). Similarly, the cortical contribution of the oxyhemoglobin signal change (ΔHbO) is equal to 73-79% of the cortical contribution to the ΔHbT signal. These results suggest that ΔHbT is far less sensitive to pial vein contamination and therefore, it is likely that the ΔHbT signal provides better spatial specificity and should be used instead of ΔHbO or ΔHbR to map cerebral activity with NIRS. While different stimuli will result in different pial vein contributions, our finger tapping results do reveal the importance of considering the pial contribution.


Biomedical Optics Express | 2013

Autoregressive model based algorithm for correcting motion and serially correlated errors in fNIRS

Jeffrey W. Barker; Ardalan Aarabi; Theodore J. Huppert

Systemic physiology and motion-induced artifacts represent two major sources of confounding noise in functional near infrared spectroscopy (fNIRS) imaging that can reduce the performance of analyses and inflate false positive rates (i.e., type I errors) of detecting evoked hemodynamic responses. In this work, we demonstrated a general algorithm for solving the general linear model (GLM) for both deconvolution (finite impulse response) and canonical regression models based on designing optimal pre-whitening filters using autoregressive models and employing iteratively reweighted least squares. We evaluated the performance of the new method by performing receiver operating characteristic (ROC) analyses using synthetic data, in which serial correlations, motion artifacts, and evoked responses were controlled via simulations, as well as using experimental data from children (3-5 years old) as a source baseline physiological noise and motion artifacts. The new method outperformed ordinary least squares (OLS) with no motion correction, wavelet based motion correction, or spline interpolation based motion correction in the presence of physiological and motion related noise. In the experimental data, false positive rates were as high as 37% when the estimated p-value was 0.05 for the OLS methods. The false positive rate was reduced to 5-9% with the proposed method. Overall, the method improves control of type I errors and increases performance when motion artifacts are present.


NeuroImage | 2008

Diffuse optical tomography of pain and tactile stimulation: Activation in cortical sensory and emotional systems☆

Lino Becerra; William A. Harris; Danny K. Joseph; Theodore J. Huppert; David A. Boas; David Borsook

Using diffuse optical tomography (DOT), we detected activation in the somatosensory cortex and frontal brain areas following tactile (brush) and noxious heat stimulation. Healthy volunteers received stimulation to the dorsum of the right hand. In the somatosensory cortex area, tactile stimulation produced a robust, contralateral to the stimulus, hemodynamic response with a weaker activation on the ipsilateral side. For the same region, noxious thermal stimuli produced bilateral activation of similar intensity that had a prolonged activation with a double peak similar to results that have been reported with functional MRI. Bilateral activation was observed in the frontal areas, oxyhemoglobin changes were positive for brush stimulation while they were initially negative (contralateral) for heat stimulation. These results suggest that based on the temporal and spatial characteristics of the response in the sensory cortex, it is possible to discern painful from mechanical stimulation using DOT. Such ability might have potential applications in a clinical setting in which pain needs to be assessed objectively (e.g., analgesic efficacy, pain responses during surgery).


Gait & Posture | 2012

Functional near-infrared spectroscopy (fNIRS) of brain function during active balancing using a video game system

Helmet Karim; Benjamin T. Schmidt; Dwight Dart; Nancy Beluk; Theodore J. Huppert

Functional near-infrared spectroscopy (fNIRS) is a portable, non-invasive, brain imaging technology that uses low levels of non-ionizing light to record changes in cerebral blood flow in the brain through optical sensors placed on the surface of the scalp. These signals are recorded via flexible fiber optic cables, which allow neuroimaging experiments to be conducted on participants while performing tasks such as standing or walking. FNIRS has the potential to provide new insights into the evolution of brain activation during ambulatory motor learning tasks and standing tasks to probe balance and vestibular function. In this study, a 32 channel fNIRS system was used to record blood flow changes in the frontal, motor, sensory, and temporal cortices during active balancing associated with playing a video game simulating downhill skiing (Nintendo Wii™; Wii-fit™). Using fNIRS, we found activation of superior temporal gyrus, which was modulated by the difficulty of the balance task. This region had been previously implicated in vestibular function from other animal and human studies.


NeuroImage | 2013

Functional brain imaging of multi-sensory vestibular processing during computerized dynamic posturography using near-infrared spectroscopy

Helmet Karim; Susan I. Fuhrman; Patrick J. Sparto; Joseph M. Furman; Theodore J. Huppert

Functional near-infrared spectroscopy (fNIRS) is a non-invasive brain imaging method that uses light to record regional changes in cerebral blood flow in the cortex during activation. fNIRS uses portable wearable sensors to allow measurements of brain activation during tasking. In this study, fNIRS was used to investigate how the brain processes information from multiple sensory modalities during dynamic posturography. Fifteen healthy volunteers (9M/6F; ages 28+/-9 yrs) participated in the posturography study while undergoing fNIRS brain imaging. Four standard conditions from the sensory organization test (SOT) were performed and a bilateral fNIRS probe was used to examine the cortical brain responses from the frontal, temporal, and parietal brain regions. We found that there was bilateral activation in the temporal-parietal areas (superior temporal gyrus, STG, and supramarginal gyrus, SMG) when both vision and proprioceptive information were degraded; forcing reliance on primarily vestibular information in the control of balance. This is consistent with previous reports of the role of these regions in vestibular control and demonstrates the potential utility of fNIRS in the study of cortical control of vestibular function during standing balance tasks.


Physics in Medicine and Biology | 2009

Topographic localization of brain activation in diffuse optical imaging using spherical wavelets

F Abdelnour; B Schmidt; Theodore J. Huppert

Diffuse optical imaging is a non-invasive technique that uses near-infrared light to measure changes in brain activity through an array of sensors placed on the surface of the head. Compared to functional MRI, optical imaging has the advantage of being portable while offering the ability to record functional changes in both oxy- and deoxy-hemoglobin within the brain at a high temporal resolution. However, the reconstruction of accurate spatial images of brain activity from optical measurements represents an ill-posed and underdetermined problem that requires regularization. These reconstructions benefit from incorporating prior information about the underlying spatial structure and function of the brain. In this work, we describe a novel image reconstruction approach which uses surface-based wavelets derived from structural MRI to incorporate high-resolution anatomical and structural prior information about the brain. This surface-based approach is used to approximate brain activation patterns through the reconstruction and presentation of topographical (two-dimensional) maps of brain activation directly onto the folded surface of the cortex. The set of wavelet coefficients is directly estimated by a truncated singular-value decomposition based pseudo-inversion of the wavelet projection of the optical forward model. We use a reconstruction metric based on Shannon entropy which quantifies the sparse loading of the wavelet coefficients and is used to determine the optimal truncation and regularization of this inverse model. In this work, examples of the performance of this model are illustrated for several cases of numerical simulation and experimental data with comparison to functional magnetic resonance imaging.


Cerebral Cortex | 2016

Functional Near-Infrared Spectroscopy Evidence for Development of Prefrontal Engagement in Working Memory in Early Through Middle Childhood

Susan B. Perlman; Theodore J. Huppert; Beatriz Luna

The neural underpinnings of working memory are hypothesized to develop incrementally across preschool and early school age, coinciding with the rapid maturation of executive function occurring during this period. This study investigates the development of prefrontal cortex function between the ages of 3 and 7. Children (n = 68) participated in a novel spatial working memory task while their middle and lateral prefrontal cortex (LPFC) was monitored using functional near infrared spectroscopy (fNIRS). We found increased activation of the LPFC when comparing working memory to rest. Greater LPFC increase was noted for longer compared with shorter delay periods. Increase in LPFC activation, accuracy, and response speed were positively correlated with child age, suggesting that developmental changes in prefrontal function might underlie effective development of executive function in this age range.


Biomedical Optics Express | 2010

Hierarchical Bayesian regularization of reconstructions for diffuse optical tomography using multiple priors

Farras Abdelnour; Christopher R. Genovese; Theodore J. Huppert

Diffuse optical tomography (DOT) is a non-invasive brain imaging technique that uses low-levels of near-infrared light to measure optical absorption changes due to regional blood flow and blood oxygen saturation in the brain. By arranging light sources and detectors in a grid over the surface of the scalp, DOT studies attempt to spatially localize changes in oxy- and deoxy-hemoglobin in the brain that result from evoked brain activity during functional experiments. However, the reconstruction of accurate spatial images of hemoglobin changes from DOT data is an ill-posed linearized inverse problem, which requires model regularization to yield appropriate solutions. In this work, we describe and demonstrate the application of a parametric restricted maximum likelihood method (ReML) to incorporate multiple statistical priors into the recovery of optical images. This work is based on similar methods that have been applied to the inverse problem for magnetoencephalography (MEG). Herein, we discuss the adaptation of this model to DOT and demonstrate that this approach provides a means to objectively incorporate reconstruction constraints and demonstrate this approach through a series of simulated numerical examples.

Collaboration


Dive into the Theodore J. Huppert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helmet Karim

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge