Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David A. Boas is active.

Publication


Featured researches published by David A. Boas.


Nature Medicine | 2002

Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model

Hayrunnisa Bolay; Uwe Reuter; Andrew K. Dunn; Zhihong Huang; David A. Boas; Michael A. Moskowitz

Although the trigeminal nerve innervates the meninges and participates in the genesis of migraine headaches, triggering mechanisms remain controversial and poorly understood. Here we establish a link between migraine aura and headache by demonstrating that cortical spreading depression, implicated in migraine visual aura, activates trigeminovascular afferents and evokes a series of cortical meningeal and brainstem events consistent with the development of headache. Cortical spreading depression caused long-lasting blood-flow enhancement selectively within the middle meningeal artery dependent upon trigeminal and parasympathetic activation, and plasma protein leakage within the dura mater in part by a neurokinin-1-receptor mechanism. Our findings provide a neural mechanism by which extracerebral cephalic blood flow couples to brain events; this mechanism explains vasodilation during headache and links intense neurometabolic brain activity with the transmission of headache pain by the trigeminal nerve.


NeuroImage | 2002

A Quantitative Comparison of Simultaneous BOLD fMRI and NIRS Recordings during Functional Brain Activation

Gary E. Strangman; Joseph P. Culver; John Thompson; David A. Boas

Near-infrared spectroscopy (NIRS) has been used to noninvasively monitor adult human brain function in a wide variety of tasks. While rough spatial correspondences with maps generated from functional magnetic resonance imaging (fMRI) have been found in such experiments, the amplitude correspondences between the two recording modalities have not been fully characterized. To do so, we simultaneously acquired NIRS and blood-oxygenation level-dependent (BOLD) fMRI data and compared Delta(1/BOLD) (approximately R(2)(*)) to changes in oxyhemoglobin, deoxyhemoglobin, and total hemoglobin concentrations derived from the NIRS data from subjects performing a simple motor task. We expected the correlation with deoxyhemoglobin to be strongest, due to the causal relation between changes in deoxyhemoglobin concentrations and BOLD signal. Instead we found highly variable correlations, suggesting the need to account for individual subject differences in our NIRS calculations. We argue that the variability resulted from systematic errors associated with each of the signals, including: (1) partial volume errors due to focal concentration changes, (2) wavelength dependence of this partial volume effect, (3) tissue model errors, and (4) possible spatial incongruence between oxy- and deoxyhemoglobin concentration changes. After such effects were accounted for, strong correlations were found between fMRI changes and all optical measures, with oxyhemoglobin providing the strongest correlation. Importantly, this finding held even when including scalp, skull, and inactive brain tissue in the average BOLD signal. This may reflect, at least in part, the superior contrast-to-noise ratio for oxyhemoglobin relative to deoxyhemoglobin (from optical measurements), rather than physiology related to BOLD signal interpretation.


Biological Psychiatry | 2002

Non-invasive neuroimaging using near-infrared light

Gary E. Strangman; David A. Boas; Jeffrey P. Sutton

This article reviews diffuse optical brain imaging, a technique that employs near-infrared light to non-invasively probe the brain for changes in parameters relating to brain function. We describe the general methodology, including types of measurements and instrumentation (including the tradeoffs inherent in the various instrument components), and the basic theory required to interpret the recorded data. A brief review of diffuse optical applications is included, with an emphasis on research that has been done with psychiatric populations. Finally, we discuss some practical issues and limitations that are relevant when conducting diffuse optical experiments. We find that, while diffuse optics can provide substantial advantages to the psychiatric researcher relative to the alternative brain imaging methods, the method remains substantially underutilized in this field.


Journal of Cerebral Blood Flow and Metabolism | 2001

Dynamic Imaging of Cerebral Blood Flow Using Laser Speckle

Andrew K. Dunn; Hayrunnisa Bolay; Michael A. Moskowitz; David A. Boas

A method for dynamic, high-resolution cerebral blood flow (CBF) imaging is presented in this article. By illuminating the cortex with laser light and imaging the resulting speckle pattern, relative CBF images with tens of microns spatial and millisecond temporal resolution are obtained. The regional CBF changes measured with the speckle technique are validated through direct comparison with conventional laser-Doppler measurements. Using this method, dynamic images of the relative CBF changes during focal cerebral ischemia and cortical spreading depression were obtained along with electrophysiologic recordings. Upon middle cerebral artery (MCA) occlusion, the speckle technique yielded high-resolution images of the residual CBF gradient encompassing the ischemic core, penumbra, oligemic, and normally perfused tissues over a 6 × 4 mm cortical area. Successive speckle images demonstrated a further decrease in residual CBF indicating an expansion of the ischemic zone with finely delineated borders. Dynamic CBF images during cortical spreading depression revealed a 2 to 3 mm area of increased CBF (160% to 250%) that propagated with a velocity of 2 to 3 mm/min. This technique is easy to implement and can be used to monitor the spatial and temporal evolution of CBF changes with high resolution in studies of cerebral pathophysiology.


IEEE Signal Processing Magazine | 2001

Imaging the body with diffuse optical tomography

David A. Boas; Dana H. Brooks; Eric L. Miller; Charles A. DiMarzio; Misha E. Kilmer; Richard J. Gaudette; Quan Zhang

Diffuse optical tomography (DOT) is an ongoing medical imaging modality in which tissue is illuminated by near-infrared light from an array of sources, the multiply-scattered light which emerges is observed with an array of detectors, and then a model of the propagation physics is used to infer the localized optical properties of the illuminated tissue. The three primary absorbers at these wavelengths, water and both oxygenated and deoxygenated hemoglobin, all have relatively weak absorption. This fortuitous fact provides a spectral window through which we can attempt to localize absorption (primarily by the two forms of hemoglobin) and scattering in the tissue. The most important current applications of DOT are detecting tumors in the breast and imaging the brain. We introduce the basic idea of DOT and review the history of optical methods in medicine as relevant to the development of DOT. We then detail the concept of DOT, including a review of the tissues optical properties, modes of operation for DOT, and the challenges which the development of DOT must overcome. The basics of modelling the DOT forward problem and some critical issues among the numerous implementations that have been investigated for the DOT inverse problem, with an emphasis on signal processing. We summarize with some specific results as examples of the current state of DOT research.


NeuroImage | 2004

Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy

David A. Boas; Anders M. Dale; Maria Angela Franceschini

Near-infrared spectroscopy (NIRS) and diffuse optical imaging (DOI) are finding widespread application in the study of human brain activation, motivating further application-specific development of the technology. NIRS and DOI offer the potential to quantify changes in deoxyhemoglobin (HbR) and total hemoglobin (HbT) concentration, thus enabling distinction of oxygen consumption and blood flow changes during brain activation. While the techniques implemented presently provide important results for cognition and the neurosciences through their relative measures of HbR and HbT concentrations, there is much to be done to improve sensitivity, accuracy, and resolution. In this paper, we review the advances currently being made and issues to consider for improving optical image quality. These include the optimal selection of wavelengths to minimize random and systematic error propagation in the calculation of the hemoglobin concentrations, the filtering of systemic physiological signal clutter to improve sensitivity to the hemodynamic response to brain activation, the implementation of overlapping measurements to improve image spatial resolution and uniformity, and the utilization of spatial prior information from structural and functional MRI to reduce DOI partial volume error and improve image quantitative accuracy.


Journal of Biomedical Optics | 2010

Laser speckle contrast imaging in biomedical optics

David A. Boas; Andrew K. Dunn

First introduced in the 1980s, laser speckle contrast imaging is a powerful tool for full-field imaging of blood flow. Recently laser speckle contrast imaging has gained increased attention, in part due to its rapid adoption for blood flow studies in the brain. We review the underlying physics of speckle contrast imaging and discuss recent developments to improve the quantitative accuracy of blood flow measures. We also review applications of laser speckle contrast imaging in neuroscience, dermatology and ophthalmology.


Applied Optics | 2009

HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain

Theodore J. Huppert; Solomon G. Diamond; Maria Angela Franceschini; David A. Boas

Near-infrared spectroscopy (NIRS) is a noninvasive neuroimaging tool for studying evoked hemodynamic changes within the brain. By this technique, changes in the optical absorption of light are recorded over time and are used to estimate the functionally evoked changes in cerebral oxyhemoglobin and deoxyhemoglobin concentrations that result from local cerebral vascular and oxygen metabolic effects during brain activity. Over the past three decades this technology has continued to grow, and today NIRS studies have found many niche applications in the fields of psychology, physiology, and cerebral pathology. The growing popularity of this technique is in part associated with a lower cost and increased portability of NIRS equipment when compared with other imaging modalities, such as functional magnetic resonance imaging and positron emission tomography. With this increasing number of applications, new techniques for the processing, analysis, and interpretation of NIRS data are continually being developed. We review some of the time-series and functional analysis techniques that are currently used in NIRS studies, we describe the practical implementation of various signal processing techniques for removing physiological, instrumental, and motion-artifact noise from optical data, and we discuss the unique aspects of NIRS analysis in comparison with other brain imaging modalities. These methods are described within the context of the MATLAB-based graphical user interface program, HomER, which we have developed and distributed to facilitate the processing of optical functional brain data.


Optics Letters | 1995

Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography

M. A. O'Leary; David A. Boas; Britton Chance; Arjun G. Yodh

We present images of heterogeneous turbid media derived from measurements of diffuse photon-density waves traveling through highly scattering tissue phantoms. To our knowledge, the images are the first experimental reconstruction based on data collected in the frequency domain. We demonstrate images of both absorbing and scattering heterogeneities and show that this method is sensitive to the optical properties of the heterogeneity. The algorithm employs a differential measurement scheme that reduces the effect of errors resulting from incorrect estimation of the background optical properties. The relative advantages of sources with low and high modulation frequency are discussed within this context.


NeuroImage | 2003

Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters

Gary E. Strangman; Maria Angela Franceschini; David A. Boas

Near-infrared spectroscopy (NIRS) can be used to noninvasively measure changes in the concentrations of oxy- and deoxyhemoglobin in tissue. We have previously shown that while global changes can be reliably measured, focal changes can produce erroneous estimates of concentration changes (NeuroImage 13 (2001), 76). Here, we describe four separate sources for systematic error in the calculation of focal hemoglobin changes from NIRS data and use experimental methods and Monte Carlo simulations to examine the importance and mitigation methods of each. The sources of error are: (1). the absolute magnitudes and relative differences in pathlength factors as a function of wavelength, (2). the location and spatial extent of the absorption change with respect to the optical probe, (3). possible differences in the spatial distribution of hemoglobin species, and (4). the potential for simultaneous monitoring of multiple regions of activation. We found wavelength selection and optode placement to be important variables in minimizing such errors, and our findings indicate that appropriate experimental procedures could reduce each of these errors to a small fraction (<10%) of the observed concentration changes.

Collaboration


Dive into the David A. Boas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Devor

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anders M. Dale

University of California

View shared research outputs
Top Co-Authors

Avatar

Andrew K. Dunn

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Arjun G. Yodh

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge