Theodore M. Mwamba
Zhejiang University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Theodore M. Mwamba.
Ecotoxicology and Environmental Safety | 2016
Theodore M. Mwamba; Lan Li; Rafaqat A. Gill; Faisal Islam; Amir Nawaz; Basharat Ali; Muhammad A. Farooq; Jonas Lwalaba Wa Lwalaba; Weijun Zhou
Metal subcellular fractions and chemical profile highly reflect their level of toxicity to plants. Cadmium and Cu, two different but potentially toxic metals, were compared in the present study for their subcellular distribution and chemical forms in two Brassica napus cultivars (Zheda 622 and ZS 758). Five-week-old seedlings were hydroponically exposed to metal stress and analyzed after 15 days of treatment. In both cultivars, Cd was less retained at cell wall, thus major part of Cd accumulated in the soluble fraction. By contrast, handsome amount of Cu was sequestrated in both cell wall and vacuole containing fraction. Across sensitive organelles, Cu preferentially accumulated in chloroplasts, while Cd was equally distributed in chloroplasts and mitochondria; the two metals intruded nucleus at lesser degree. Further, Cd and Cu differentially interacted with various cellular ligands, and the extent of interaction was higher in the tolerant cultivar ZS 758. Copper was remarkably sequestrated by phosphates, and secondarily by peptide-ligands; inversely, the role of phosphates was secondary in Cd complexation, which was mainly achieved by peptide-ligands. Additional amount of Cu was aggregated with oxalates, but oxalate-bound Cd was scarcely detected. Current results have demonstrated varied toxicological and detoxification pathways of Cd and Cu in B. napus, suggesting that the efficiency of different alleviation strategies could vary against Cd and Cu toxicity to plants.
Ecotoxicology and Environmental Safety | 2017
Jonas Lwalaba Wa Lwalaba; Gerald Zvobgo; Liangbo Fu; Xuelei Zhang; Theodore M. Mwamba; Noor Muhammad; Robert Prince Mukobo Mundende; Guoping Zhang
Cobalt (Co) contamination in soils is becoming a severe issue in environment safety and crop production. Calcium (Ca), as a macro-nutrient element, shows the antagonism with many divalent heavy metals and the capacity of alleviating oxidative stress in plants. In this study, the protective role of Ca in alleviating Co stress was hydroponically investigated using two barley genotypes differing in Co toxicity tolerance. Barley seedlings exposed to 100µM Co showed the significant reduction in growth and photosynthetic rate, and the dramatic increase in the contents of reactive oxygen species (ROS), malondialdehyde (MDA), reduced glutathione (GSH) and oxidized glutathione (GSSG), and the activities of anti-oxidative enzymes, with Ea52 (Co-sensitive) being much more affected than Yan66 (Co-tolerant). Addition of Ca in growth medium alleviated Co toxicity by reducing Co uptake and enhancing the antioxidant capacity. The effect of Ca in alleviating Co toxicity was much greater in Yan66 than in Ea52. The results indicate that the alleviation of Co toxicity in barley plants by Ca is attributed to the reduced Co uptake and enhanced antioxidant capacity.
International Journal of Environmental Science and Technology | 2018
Skhawat Ali; Rafaqat A. Gill; Theodore M. Mwamba; Na Zhang; Meile Lv; Z. ul Hassan; Faisal Islam; W. J. Zhou
Abstract Despite the increasing environmental threat of cobalt in the modern era, less is known as its phytotoxicity behavior. Therefore, the present study was undertaken to assess the toxicity effects of cobalt and to understand the associated physio-biochemical response in Brassica napus, an economically important plant crop species. Five-day-old seedlings of four cultivars (Zheda 619, Zheda 622, ZS 758, and ZY 50) were exposed to five different levels of cobalt under hydroponic conditions. Results showed a concentration-dependent inhibition of plant growth, accompanied by notable chlorophyll loss, protein degradation, and accumulation of reactive oxygen species and malondialdehyde. Further, Co contents in different plants parts were found to be higher in Zheda 622 than all other cultivars. In all cultivars, the contents of enzymatic activities (SOD, POD, GR, and GSH) were markedly increased following cobalt exposure; by contrast, catalase and ascorbate peroxidase activities declined with increased cobalt concentration in medium, which was also, echoed by the pattern of enzymes-related mRNA levels. Morphological observations, supported by ultrastructural analysis revealed clear differences in cobalt sensitivity among cultivars, with ZS 758 identified as less sensitive cultivar, and Zheda 622 the most sensitive one. In addition to revealing genotypic differences in cobalt sensitivity in B. napus, findings suggest the mechanisms of cobalt tolerance in this specie could, at least partially, in relation with the ability of plant to sustain the activity of superoxide dismutase and guaicol peroxidase and to maintain glutathione reduced pool through the action of glutathione reductase.
BioMed Research International | 2018
Skhawat Ali; Rong Jin; Rafaqat A. Gill; Theodore M. Mwamba; Na Zhang; Zaid ul Hassan; Faisal Islam; Shafaqat Ali; Weijun Zhou
Beryllium (Be) could be a threatening heavy metal pollutant in the agroecosystem that may severely affect the performance of crops. The present study was conducted to evaluate the toxic effects of Be (0, 100, 200, and 400 μM) on physiological, ultrastructure, and biochemical attributes in hydroponically grown six-day-old seedlings of two cultivars of Brassica napus L., one tolerant (ZS 758, black seeded) and one sensitive (Zheda 622, yellow seeded). Higher Be concentrations reduced the plant growth, biomass production, chlorophyll contents, and the total soluble protein contents. A significant accumulation of ROS (H2O2, OH−) and MDA contents was observed in a dose-dependent manner. Antioxidant enzymatic activities including SOD, POD, GR, APX, and GSH (except CAT) were enhanced with the increase in Be concentrations in both cultivars. Relative transcript gene expression of above-mentioned antioxidant enzymes further confirmed the alterations induced by Be as depicted from higher involvement in the least susceptible cultivar ZS 758 as compared to Zheda 622. The electron microscopic study showed that higher level of Be (400 μM) greatly damaged the leaf mesophyll and root tip cells. More damage was observed in cultivar Zheda 622 as compared to ZS 758. The damage in leaf mesophyll cells was highlighted as the disruption in cell wall, immature nucleus, damaged mitochondria, and chloroplast structures. In root tip cells, disruption in Golgi bodies and damage in cell wall were clearly noticed. As a whole, the present study confirmed that more inhibitory effects were recorded in yellow seeded Zheda 622 as compared to black seeded ZS 758 cultivar, which is regarded as more sensitive cultivar.
Frontiers in Plant Science | 2017
Rafaqat A. Gill; Basharat Ali; Su Yang; Chaobo Tong; Faisal Islam; Muhammad B. Gill; Theodore M. Mwamba; Skhawat Ali; Bizeng Mao; Shengyi Liu; Weijun Zhou
Chromium (Cr) as a toxic metal is widely used for commercial purposes and its residues have become a potential environmental threat to both human and plant health. Oilseed rape (Brassica napus L.) is one of the candidate plants that can absorb the considerable quantity of toxic metals from the soil. Here, we used two cultivars of B. napus cvs. ZS 758 (metal-tolerant) and Zheda 622 (metal-susceptible) to investigate the phenological attributes, cell ultrastructure, protein kinases (PKs) and molecular transporters (MTs) under the combined treatments of Cr stress and reduced glutathione (GSH). Seeds of these cultivars were grown in vitro at different treatments i.e., 0, 400 μM Cr, and 400 μM Cr + 1 mM GSH in control growth chamber for 6 days. Results had confirmed that Cr significantly reduced the plant length, stem and root, and fresh biomass such as leaf, stem and root. Cr noticeably caused the damages in leaf mesophyll cells. Exogenous application of GSH significantly recovered both phenological and cell structural damages in two cultivars under Cr stress. For the PKs, transcriptomic data advocated that Cr stress alone significantly increased the gene expressions of BnaA08g16610D, BnaCnng19320D, and BnaA08g00390D over that seen in controls (Ck). These genes encoded both nucleic acid and transition metal ion binding proteins, and protein kinase activity (PKA) and phosphotransferase activities in both cultivars. Similarly, the presence of Cr revealed elite MT genes [BnaA04g26560D, BnaA02g28130D, and BnaA02g01980D (novel)] that were responsible for water transmembrane transporter activity. However, GSH in combination with Cr stress significantly up-regulated the genes for PKs [such as BnaCnng69940D (novel) and BnaC08g49360D] that were related to PKA, signal transduction, and oxidoreductase activities. For MTs, BnaC01g29930D and BnaA07g14320D were responsible for secondary active transmembrane transporter and protein transporter activities that were expressed more in GSH treatment than either Ck or Cr-treated cells. In general, it can be concluded that cultivar ZS 758 is more tolerant toward Cr-induced stress than Zheda 622.
Plant Physiology and Biochemistry | 2015
Rafaqat A. Gill; Basharat Ali; Faisal Islam; Muhammad A. Farooq; Muhammad B. Gill; Theodore M. Mwamba; Weijun Zhou
Plant Growth Regulation | 2014
Basharat Ali; Theodore M. Mwamba; Rafaqat A. Gill; Chong Yang; Shafaqat Ali; M. K. Daud; Yueyan Wu; Weijun Zhou
International Journal of Environmental Science and Technology | 2016
Theodore M. Mwamba; Skhawat Ali; Basharat Ali; Jonas Lwalaba Wa Lwalaba; H. Liu; Muhammad A. Farooq; J. Shou; W. J. Zhou
Ecotoxicology and Environmental Safety | 2018
Zaid Ulhassan; Skhawat Ali; Rafaqat A. Gill; Theodore M. Mwamba; Muhammad Abid; Lan Li; Na Zhang; Weijun Zhou
Archive | 2018
Rafaqat A. Gill; Basharat Ali; Su Yang; Chaobo Tong; Zaid ul Hassan; Muhammad B. Gill; Theodore M. Mwamba; Skhawat Ali Gill; Shengyi Liu; Weijun Zhou