Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Theodore S. Kalbfleisch is active.

Publication


Featured researches published by Theodore S. Kalbfleisch.


Cancer Letters | 2011

Differential expression of microRNA expression in tamoxifen-sensitive MCF-7 versus tamoxifen-resistant LY2 human breast cancer cells

Tissa T. Manavalan; Yun Teng; Savitri Appana; Susmita Datta; Theodore S. Kalbfleisch; Yong Li; Carolyn M. Klinge

Microarrays identified miRNAs differentially expressed and 4-hydroxytamoxifen (4-OHT) regulated in MCF-7 endocrine-sensitive versus resistant LY2 human breast cancer cells. 97 miRNAs were differentially expressed in MCF-7 versus LY2 cells. Opposite expression of miRs-10a, 21, 22, 29a, 93, 125b, 181, 200a, 200b, 200c, 205, and 222 was confirmed. Bioinformatic analyses to impute the biological significance of these miRNAs identified 36 predicted gene targets from those regulated by 4-OHT in MCF-7 cells. Agreement in the direction of anticipated regulation was detected for 12 putative targets. These miRNAs with opposite expression between the two cell lines may be involved in endocrine resistance.


PLOS ONE | 2014

SNPs for Parentage Testing and Traceability in Globally Diverse Breeds of Sheep

Michael P. Heaton; K. A. Leymaster; Theodore S. Kalbfleisch; James W. Kijas; Shannon M. Clarke; J. C. McEwan; J. F. Maddox; Veronica Basnayake; Dustin T. Petrik; Barry Simpson; T. P. L. Smith; Carol G. Chitko-McKown

DNA-based parentage determination accelerates genetic improvement in sheep by increasing pedigree accuracy. Single nucleotide polymorphism (SNP) markers can be used for determining parentage and to provide unique molecular identifiers for tracing sheep products to their source. However, the utility of a particular “parentage SNP” varies by breed depending on its minor allele frequency (MAF) and its sequence context. Our aims were to identify parentage SNPs with exceptional qualities for use in globally diverse breeds and to develop a subset for use in North American sheep. Starting with genotypes from 2,915 sheep and 74 breed groups provided by the International Sheep Genomics Consortium (ISGC), we analyzed 47,693 autosomal SNPs by multiple criteria and selected 163 with desirable properties for parentage testing. On average, each of the 163 SNPs was highly informative (MAF≥0.3) in 48±5 breed groups. Nearby polymorphisms that could otherwise confound genetic testing were identified by whole genome and Sanger sequencing of 166 sheep from 54 breed groups. A genetic test with 109 of the 163 parentage SNPs was developed for matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry. The scoring rates and accuracies for these 109 SNPs were greater than 99% in a panel of North American sheep. In a blinded set of 96 families (sire, dam, and non-identical twin lambs), each parent of every lamb was identified without using the other parent’s genotype. In 74 ISGC breed groups, the median estimates for probability of a coincidental match between two animals (PI), and the fraction of potential adults excluded from parentage (PE) were 1.1×10(−39) and 0.999987, respectively, for the 109 SNPs combined. The availability of a well-characterized set of 163 parentage SNPs facilitates the development of high-throughput genetic technologies for implementing accurate and economical parentage testing and traceability in many of the world’s sheep breeds.


PLOS Genetics | 2012

Reduced Lentivirus Susceptibility in Sheep with TMEM154 Mutations

Michael P. Heaton; Michael L. Clawson; Carol G. Chitko-McKown; K. A. Leymaster; T. P. L. Smith; Gregory P. Harhay; Stephen N. White; Lynn M. Herrmann-Hoesing; Michelle R. Mousel; Gregory S. Lewis; Theodore S. Kalbfleisch; James E. Keen; William W. Laegreid

Visna/Maedi, or ovine progressive pneumonia (OPP) as it is known in the United States, is an incurable slow-acting disease of sheep caused by persistent lentivirus infection. This disease affects multiple tissues, including those of the respiratory and central nervous systems. Our aim was to identify ovine genetic risk factors for lentivirus infection. Sixty-nine matched pairs of infected cases and uninfected controls were identified among 736 naturally exposed sheep older than five years of age. These pairs were used in a genome-wide association study with 50,614 markers. A single SNP was identified in the ovine transmembrane protein (TMEM154) that exceeded genome-wide significance (unadjusted p-value 3×10−9). Sanger sequencing of the ovine TMEM154 coding region identified six missense and two frameshift deletion mutations in the predicted signal peptide and extracellular domain. Two TMEM154 haplotypes encoding glutamate (E) at position 35 were associated with infection while a third haplotype with lysine (K) at position 35 was not. Haplotypes encoding full-length E35 isoforms were analyzed together as genetic risk factors in a multi-breed, matched case-control design, with 61 pairs of 4-year-old ewes. The odds of infection for ewes with one copy of a full-length TMEM154 E35 allele were 28 times greater than the odds for those without (p-value<0.0001, 95% CI 5–1,100). In a combined analysis of nine cohorts with 2,705 sheep from Nebraska, Idaho, and Iowa, the relative risk of infection was 2.85 times greater for sheep with a full-length TMEM154 E35 allele (p-value<0.0001, 95% CI 2.36–3.43). Although rare, some sheep were homozygous for TMEM154 deletion mutations and remained uninfected despite a lifetime of significant exposure. Together, these findings indicate that TMEM154 may play a central role in ovine lentivirus infection and removing sheep with the most susceptible genotypes may help eradicate OPP and protect flocks from reinfection.


BMC Veterinary Research | 2008

Prevalence of the prion protein gene E211K variant in U.S. cattle

Michael P. Heaton; J. W. Keele; Gregory P. Harhay; Jürgen A. Richt; Mohammad Koohmaraie; T. L. Wheeler; S. D. Shackelford; E. Casas; D. Andy King; Tad S. Sonstegard; Curtis P. Van Tassell; H. L. Neibergs; C. C. Chase; Theodore S. Kalbfleisch; T. P. L. Smith; Michael L. Clawson; William W. Laegreid

BackgroundIn 2006, an atypical U.S. case of bovine spongiform encephalopathy (BSE) was discovered in Alabama and later reported to be polymorphic for glutamate (E) and lysine (K) codons at position 211 in the bovine prion protein gene (Prnp) coding sequence. A bovine E211K mutation is important because it is analogous to the most common pathogenic mutation in humans (E200K) which causes hereditary Creutzfeldt – Jakob disease, an autosomal dominant form of prion disease. The present report describes a high-throughput matrix-associated laser desorption/ionization-time-of-flight mass spectrometry assay for scoring the Prnp E211K variant and its use to determine an upper limit for the K211 allele frequency in U.S. cattle.ResultsThe K211 allele was not detected in 6062 cattle, including those from five commercial beef processing plants (3892 carcasses) and 2170 registered cattle from 42 breeds. Multiple nearby polymorphisms in Prnp coding sequence of 1456 diverse purebred cattle (42 breeds) did not interfere with scoring E211 or K211 alleles. Based on these results, the upper bounds for prevalence of the E211K variant was estimated to be extremely low, less than 1 in 2000 cattle (Bayesian analysis based on 95% quantile of the posterior distribution with a uniform prior).ConclusionNo groups or breeds of U.S. cattle are presently known to harbor the Prnp K211 allele. Because a carrier was not detected, the number of additional atypical BSE cases with K211 will also be vanishingly low.


PLOS ONE | 2011

Genome Assembly Has a Major Impact on Gene Content: A Comparison of Annotation in Two Bos Taurus Assemblies

Liliana Florea; Alexander Souvorov; Theodore S. Kalbfleisch

Gene and SNP annotation are among the first and most important steps in analyzing a genome. As the number of sequenced genomes continues to grow, a key question is: how does the quality of the assembled sequence affect the annotations? We compared the gene and SNP annotations for two different Bos taurus genome assemblies built from the same data but with significant improvements in the later assembly. The same annotation software was used for annotating both sequences. While some annotation differences are expected even between high-quality assemblies such as these, we found that a staggering 40% of the genes (>9,500) varied significantly between assemblies, due in part to the availability of new gene evidence but primarily to genome mis-assembly events and local sequence variations. For instance, although the later assembly is generally superior, 660 protein coding genes in the earlier assembly are entirely missing from the later genomes annotation, and approximately 3,600 (15%) of the genes have complex structural differences between the two assemblies. In addition, 12–20% of the predicted proteins in both assemblies have relatively large sequence differences when compared to their RefSeq models, and 6–15% of bovine dbSNP records are unrecoverable in the two assemblies. Our findings highlight the consequences of genome assembly quality on gene and SNP annotation and argue for continued improvements in any draft genome sequence. We also found that tracking a gene between different assemblies of the same genome is surprisingly difficult, due to the numerous changes, both small and large, that occur in some genes. As a side benefit, our analyses helped us identify many specific loci for improvement in the Bos taurus genome assembly.


BMC Genomics | 2016

Genomic signatures of Mannheimia haemolytica that associate with the lungs of cattle with respiratory disease, an integrative conjugative element, and antibiotic resistance genes.

Michael L. Clawson; Robert W. Murray; Michael T. Sweeney; Michael D. Apley; Keith D. DeDonder; Sarah F. Capik; Robert L. Larson; Brian V. Lubbers; Brad J. White; Theodore S. Kalbfleisch; Gennie Schuller; Aaron M. Dickey; Gregory P. Harhay; Michael P. Heaton; Carol G. Chitko-McKown; Dayna M. Brichta-Harhay; James L. Bono; T. P. L. Smith

BackgroundMannheimia haemolytica typically resides in cattle as a commensal member of the upper respiratory tract microbiome. However, some strains can invade their lungs and cause respiratory disease and death, including those with multi-drug resistance. A nucleotide polymorphism typing system was developed for M. haemolytica from the genome sequences of 1133 North American isolates, and used to identify genetic differences between isolates from the lungs and upper respiratory tract of cattle with and without clinical signs of respiratory disease.ResultsA total of 26,081 nucleotide polymorphisms were characterized after quality control filtering of 48,403 putative polymorphisms. Phylogenetic analyses of nucleotide polymorphism genotypes split M. haemolytica into two major genotypes (1 and 2) that each were further divided into multiple subtypes. Multiple polymorphisms were identified with alleles that tagged genotypes 1 or 2, and their respective subtypes. Only genotype 2 M. haemolytica associated with the lungs of diseased cattle and the sequence of a particular integrative and conjugative element (ICE). Additionally, isolates belonging to one subtype of genotype 2 (2b), had the majority of antibiotic resistance genes detected in this study, which were assorted into seven combinations that ranged from 1 to 12 resistance genes.ConclusionsTyping of diverse M. haemolytica by nucleotide polymorphism genotypes successfully identified associations with diseased cattle lungs, ICE sequence, and antibiotic resistance genes. Management of cattle by their carriage of M. haemolytica could be an effective intervention strategy to reduce the prevalence of respiratory disease and supplemental needs for antibiotic treatments in North American herds.


BMC Veterinary Research | 2010

Ovine reference materials and assays for prion genetic testing

Michael P. Heaton; K. A. Leymaster; Theodore S. Kalbfleisch; Brad A. Freking; T. P. L. Smith; Michael L. Clawson; William W. Laegreid

BackgroundGenetic predisposition to scrapie in sheep is associated with several variations in the peptide sequence of the prion protein gene (PRNP). DNA-based tests for scoring PRNP codons are essential tools for eradicating scrapie and for evaluating rare alleles for increased resistance to disease. In addition to those associated with scrapie, there are dozens more PRNP polymorphisms that may occur in various flocks. If not accounted for, these sites may cause base-pair mismatching with oligonucleotides used in DNA testing. Thus, the fidelity of scrapie genetic testing is enhanced by knowing the position and frequency of PRNP polymorphisms in targeted flocks.ResultsAn adaptive DNA sequencing strategy was developed to determine the 771 bp PRNP coding sequence for any sheep and thereby produce a consensus sequence for targeted flocks. The strategy initially accounted for 43 known polymorphisms and facilitates the detection of unknown polymorphisms through an overlapping amplicon design. The strategy was applied to 953 sheep DNAs from multiple breeds in U.S. populations. The samples included two sets of reference sheep: one set for standardizing PRNP genetic testing and another set for discovering polymorphisms, estimating allele frequencies, and determining haplotype phase. DNA sequencing revealed 16 previously unreported polymorphisms, including a L237P variant on the F141 haplotype. Two mass spectrometry multiplex assays were developed to score five codons of interest in U.S. sheep: 112, 136, 141, 154, and 171. Reference tissues, DNA, trace files, and genotypes from this project are publicly available for use without restriction.ConclusionIdentifying ovine PRNP polymorphisms in targeted flocks is critical for designing efficient scrapie genetic testing systems. Together with reference DNA panels, this information facilitates training, certification, and development of new tests and knowledge that may expedite the eradication of sheep scrapie.


Breast Cancer Research and Treatment | 2015

Interaction between smoking history and gene expression levels impacts survival of breast cancer patients

Sarah A. Andres; Katie E. Bickett; Mohammad A. Alatoum; Theodore S. Kalbfleisch; Guy N. Brock; James L. Wittliff

In contrast to studies focused on cigarette smoking and risk of breast cancer occurrence, this study explored the influence of smoking on breast cancer recurrence and progression. The goal was to evaluate the interaction between smoking history and gene expression levels on recurrence and overall survival of breast cancer patients. Multivariable Cox proportional hazards models were fitted for 48 cigarette smokers, 50 non-smokers, and the total population separately to determine which gene expressions and gene expression/cigarette usage interaction terms were significant in predicting overall and disease-free survival in breast cancer patients. Using methods similar to Andres et al. (BMC Cancer 13:326, 2013a; Horm Cancer 4:208–221, 2013b), multivariable analyses revealed CENPN, CETN1, CYP1A1, IRF2, LECT2, and NCOA1 to be important predictors for both breast carcinoma recurrence and mortality among smokers. Additionally, COMT was important for recurrence, and NAT1 and RIPK1 were important for mortality. In contrast, only IRF2, CETN1, and CYP1A1 were significant for disease recurrence and mortality among non-smokers, with NAT2 additionally significant for survival. Analysis of interaction between smoking status and gene expression values using the combined samples revealed significant interactions between smoking status and CYP1A1, LECT2, and CETN1. Signatures consisting of 7–8 genes were highly predictive for breast cancer recurrence and overall survival among smokers, with median C-index values of 0.8 and 0.73 for overall survival and recurrence, respectively. In contrast, median C-index values for non-smokers was only 0.59. Hence, significant interactions between gene expression and smoking status can play a key role in predicting breast cancer patient outcomes.


PLOS ONE | 2013

Genetic testing for TMEM154 mutations associated with lentivirus susceptibility in sheep.

Michael P. Heaton; Theodore S. Kalbfleisch; Dustin T. Petrik; Barry Simpson; James W. Kijas; Michael L. Clawson; Carol G. Chitko-McKown; Gregory P. Harhay; K. A. Leymaster

In sheep, small ruminant lentiviruses cause an incurable, progressive, lymphoproliferative disease that affects millions of animals worldwide. Known as ovine progressive pneumonia virus (OPPV) in the U.S., and Visna/Maedi virus (VMV) elsewhere, these viruses reduce an animal’s health, productivity, and lifespan. Genetic variation in the ovine transmembrane protein 154 gene (TMEM154) has been previously associated with OPPV infection in U.S. sheep. Sheep with the ancestral TMEM154 haplotype encoding glutamate (E) at position 35, and either form of an N70I variant, were highly-susceptible compared to sheep homozygous for the K35 missense mutation. Our current overall aim was to characterize TMEM154 in sheep from around the world to develop an efficient genetic test for reduced susceptibility. The average frequency of TMEM154 E35 among 74 breeds was 0.51 and indicated that highly-susceptible alleles were present in most breeds around the world. Analysis of whole genome sequences from an international panel of 75 sheep revealed more than 1,300 previously unreported polymorphisms in a 62 kb region containing TMEM154 and confirmed that the most susceptible haplotypes were distributed worldwide. Novel missense mutations were discovered in the signal peptide (A13V) and the extracellular domains (E31Q, I74F, and I102T) of TMEM154. A matrix-assisted laser desorption/ionization–time-of flight mass spectrometry (MALDI-TOF MS) assay was developed to detect these and six previously reported missense and two deletion mutations in TMEM154. In blinded trials, the call rate for the eight most common coding polymorphisms was 99.4% for 499 sheep tested and 96.0% of the animals were assigned paired TMEM154 haplotypes (i.e., diplotypes). The widespread distribution of highly-susceptible TMEM154 alleles suggests that genetic testing and selection may improve the health and productivity of infected flocks.


Journal of Virology | 2016

Equine Arteritis Virus Uses Equine CXCL16 as an Entry Receptor

Sanjay Sarkar; Lakshman Chelvarajan; Yun Young Go; Frank R. Cook; Sergey Artiushin; Shankar Mondal; Kelsi Anderson; John E. Eberth; Peter J. Timoney; Theodore S. Kalbfleisch; Ernest Bailey; Udeni B.R. Balasuriya

ABSTRACT Previous studies in our laboratory have identified equine CXCL16 (EqCXCL16) to be a candidate molecule and possible cell entry receptor for equine arteritis virus (EAV). In horses, the CXCL16 gene is located on equine chromosome 11 (ECA11) and encodes a glycosylated, type I transmembrane protein with 247 amino acids. Stable transfection of HEK-293T cells with plasmid DNA carrying EqCXCL16 (HEK-EqCXCL16 cells) increased the proportion of the cell population permissive to EAV infection from <3% to almost 100%. The increase in permissiveness was blocked either by transfection of HEK-EqCXCL16 cells with small interfering RNAs (siRNAs) directed against EqCXCL16 or by pretreatment with guinea pig polyclonal antibody against EqCXCL16 protein (Gp anti-EqCXCL16 pAb). Furthermore, using a virus overlay protein-binding assay (VOPBA) in combination with far-Western blotting, gradient-purified EAV particles were shown to bind directly to the EqCXCL16 protein in vitro. The binding of biotinylated virulent EAV strain Bucyrus at 4°C was significantly higher in HEK-EqCXCL16 cells than nontransfected HEK-293T cells. Finally, the results demonstrated that EAV preferentially infects subpopulations of horse CD14+ monocytes expressing EqCXCL16 and that infection of these cells is significantly reduced by pretreatment with Gp anti-EqCXCL16 pAb. The collective data from this study provide confirmatory evidence that the transmembrane form of EqCXCL16 likely plays a major role in EAV host cell entry processes, possibly acting as a primary receptor molecule for this virus. IMPORTANCE Outbreaks of EVA can be a source of significant economic loss for the equine industry from high rates of abortion in pregnant mares, death in young foals, establishment of the carrier state in stallions, and trade restrictions imposed by various countries. Similar to other arteriviruses, EAV primarily targets cells of the monocyte/macrophage lineage, which, when infected, are believed to play a critical role in EVA pathogenesis. To this point, however, the host-specified molecules involved in EAV binding and entry into monocytes/macrophages have not been identified. Identification of the cellular receptors for EAV may provide insights to design antivirals and better prophylactic reagents. In this study, we have demonstrated that EqCXCL16 acts as an EAV entry receptor in EAV-susceptible cells, equine monocytes. These findings represent a significant advance in our understanding of the fundamental mechanisms associated with the entry of EAV into susceptible cells.

Collaboration


Dive into the Theodore S. Kalbfleisch's collaboration.

Top Co-Authors

Avatar

Michael P. Heaton

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

T. P. L. Smith

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. A. Leymaster

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory P. Harhay

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge