Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carolina S. Ilkow is active.

Publication


Featured researches published by Carolina S. Ilkow.


Molecular Therapy | 2012

The Oncolytic Poxvirus JX-594 Selectively Replicates in and Destroys Cancer Cells Driven by Genetic Pathways Commonly Activated in Cancers

Kelley Parato; Caroline J. Breitbach; Fabrice Le Boeuf; Jiahu Wang; Chris Storbeck; Carolina S. Ilkow; Jean-Simon Diallo; Theresa Falls; Joseph K. Burns; Vanessa Garcia; Femina Kanji; Laura Evgin; Kang Hu; Francois Paradis; Shane Knowles; Tae-Ho Hwang; Barbara C. Vanderhyden; Rebecca C. Auer; David Kirn; John C. Bell

Oncolytic viruses are generally designed to be cancer selective on the basis of a single genetic mutation. JX-594 is a thymidine kinase (TK) gene-inactivated oncolytic vaccinia virus expressing granulocyte-macrophage colony-stimulating factor (GM-CSF) and lac-Z transgenes that is designed to destroy cancer cells through replication-dependent cell lysis and stimulation of antitumoral immunity. JX-594 has demonstrated a favorable safety profile and reproducible tumor necrosis in a variety of solid cancer types in clinical trials. However, the mechanism(s) responsible for its cancer-selectivity have not yet been well described. We analyzed the replication of JX-594 in three model systems: primary normal and cancer cells, surgical explants, and murine tumor models. JX-594 replication, transgene expression, and cytopathic effects were highly cancer-selective, and broad spectrum activity was demonstrated. JX-594 cancer-selectivity was multi-mechanistic; replication was activated by epidermal growth factor receptor (EGFR)/Ras pathway signaling, cellular TK levels, and cancer cell resistance to type-I interferons (IFNs). These findings confirm a large therapeutic index for JX-594 that is driven by common genetic abnormalities in human solid tumors. This appears to be the first description of multiple selectivity mechanisms, both inherent and engineered, for an oncolytic virus. These findings have implications for oncolytic viruses in general, and suggest that their cancer targeting is a complex and multifactorial process.


Cancer Research | 2013

Oncolytic Vaccinia Virus Disrupts Tumor-Associated Vasculature in Humans

Caroline J. Breitbach; Rozanne Arulanandam; Naomi De Silva; Steve H. Thorne; Richard H. Patt; Manijeh Daneshmand; Anne Moon; Carolina S. Ilkow; James R. Burke; Tae-Ho Hwang; Jeong Heo; Mong Cho; Hannah Chen; Fernando A. Angarita; Christina L. Addison; J. Andrea McCart; John C. Bell; David Kirn

Efforts to selectively target and disrupt established tumor vasculature have largely failed to date. We hypothesized that a vaccinia virus engineered to target cells with activation of the ras/MAPK signaling pathway (JX-594) could specifically infect and express transgenes (hGM-CSF, β-galactosidase) in tumor-associated vascular endothelial cells in humans. Efficient replication and transgene expression in normal human endothelial cells in vitro required either VEGF or FGF-2 stimulation. Intravenous infusion in mice resulted in virus replication in tumor-associated endothelial cells, disruption of tumor blood flow, and hypoxia within 48 hours; massive tumor necrosis ensued within 5 days. Normal vessels were not affected. In patients treated with intravenous JX-594 in a phase I clinical trial, we showed dose-dependent endothelial cell infection and transgene expression in tumor biopsies of diverse histologies. Finally, patients with advanced hepatocellular carcinoma, a hypervascular and VEGF-rich tumor type, were treated with JX-594 on phase II clinical trials. JX-594 treatment caused disruption of tumor perfusion as early as 5 days in both VEGF receptor inhibitor-naïve and -refractory patients. Toxicities to normal blood vessels or to wound healing were not evident clinically or on MRI scans. This platform technology opens up the possibility of multifunctional engineered vaccinia products that selectively target and infect tumor-associated endothelial cells, as well as cancer cells, resulting in transgene expression, vasculature disruption, and tumor destruction in humans systemically.


Nature Biotechnology | 2014

Smac mimetics and innate immune stimuli synergize to promote tumor death

Shawn T. Beug; Vera Tang; Eric C. LaCasse; Herman H. Cheung; Caroline E. Beauregard; Jan Brun; Jeffrey P Nuyens; Nathalie Earl; Martine St-Jean; Janelle Holbrook; Himika Dastidar; Douglas J. Mahoney; Carolina S. Ilkow; Fabrice Le Boeuf; John C. Bell; Robert G. Korneluk

Smac mimetic compounds (SMC), a class of drugs that sensitize cells to apoptosis by counteracting the activity of inhibitor of apoptosis (IAP) proteins, have proven safe in phase 1 clinical trials in cancer patients. However, because SMCs act by enabling transduction of pro-apoptotic signals, SMC monotherapy may be efficacious only in the subset of patients whose tumors produce large quantities of death-inducing proteins such as inflammatory cytokines. Therefore, we reasoned that SMCs would synergize with agents that stimulate a potent yet safe “cytokine storm.” Here we show that oncolytic viruses and adjuvants such as poly(I:C) and CpG induce bystander death of cancer cells treated with SMCs that is mediated by interferon beta (IFN-β), tumor necrosis factor alpha (TNF-α) and/or TNF-related apoptosis-inducing ligand (TRAIL). This combinatorial treatment resulted in tumor regression and extended survival in two mouse models of cancer. As these and other adjuvants have been proven safe in clinical trials, it may be worthwhile to explore their clinical efficacy in combination with SMCs.


Journal of Virology | 2008

Rubella Virus Capsid Protein Interacts with Poly(A)-Binding Protein and Inhibits Translation

Carolina S. Ilkow; Valeria Mancinelli; Martin D. Beatch; Tom C. Hobman

ABSTRACT During virus assembly, the capsid proteins of RNA viruses bind to genomic RNA to form nucleocapsids. However, it is now evident that capsid proteins have additional functions that are unrelated to nucleocapsid formation. Specifically, their interactions with cellular proteins may influence signaling pathways or other events that affect virus replication. Here we report that the rubella virus (RV) capsid protein binds to poly(A)-binding protein (PABP), a host cell protein that enhances translational efficiency by circularizing mRNAs. Infection of cells with RV resulted in marked increases in the levels of PABP, much of which colocalized with capsid in the cytoplasm. Mapping studies revealed that capsid binds to the C-terminal half of PABP, which interestingly is the region that interacts with other translation regulators, including PABP-interacting protein 1 (Paip1) and Paip2. The addition of capsid to in vitro translation reaction mixtures inhibited protein synthesis in a dose-dependent manner; however, the capsid block was alleviated by excess PABP, indicating that inhibition of translation occurs through a stoichiometric mechanism. To our knowledge, this is the first report of a viral protein that inhibits protein translation by sequestration of PABP. We hypothesize that capsid-dependent inhibition of translation may facilitate the switch from viral translation to packaging RNA into nucleocapsids.


PLOS Pathogens | 2014

From Scourge to Cure: Tumour-Selective Viral Pathogenesis as a New Strategy against Cancer

Carolina S. Ilkow; Stephanie L. Swift; John C. Bell; Jean-Simon Diallo

Tumour mutations corrupt cellular pathways, and accumulate to disrupt, dysregulate, and ultimately avoid mechanisms of cellular control. Yet the very changes that tumour cells undergo to secure their own growth success also render them susceptible to viral infection. Enhanced availability of surface receptors, disruption of antiviral sensing, elevated metabolic activity, disengagement of cell cycle controls, hyperactivation of mitogenic pathways, and apoptotic avoidance all render the malignant cell environment highly supportive to viral replication. The therapeutic use of oncolytic viruses (OVs) with a natural tropism for infecting and subsequently lysing tumour cells is a rapidly progressing area of cancer research. While many OVs exhibit an inherent degree of tropism for transformed cells, this can be further promoted through pharmacological interventions and/or the introduction of viral mutations that generate recombinant oncolytic viruses adapted to successfully replicate only in a malignant cellular environment. Such adaptations that augment OV tumour selectivity are already improving the therapeutic outlook for cancer, and there remains tremendous untapped potential for further innovation.


PLOS Pathogens | 2011

The Rubella Virus Capsid Is an Anti-Apoptotic Protein that Attenuates the Pore-Forming Ability of Bax

Carolina S. Ilkow; Ing Swie Goping; Tom C. Hobman

Apoptosis is an important mechanism by which virus-infected cells are eliminated from the host. Accordingly, many viruses have evolved strategies to prevent or delay apoptosis in order to provide a window of opportunity in which virus replication, assembly and egress can take place. Interfering with apoptosis may also be important for establishment and/or maintenance of persistent infections. Whereas large DNA viruses have the luxury of encoding accessory proteins whose primary function is to undermine programmed cell death pathways, it is generally thought that most RNA viruses do not encode these types of proteins. Here we report that the multifunctional capsid protein of Rubella virus is a potent inhibitor of apoptosis. The main mechanism of action was specific for Bax as capsid bound Bax and prevented Bax-induced apoptosis but did not bind Bak nor inhibit Bak-induced apoptosis. Intriguingly, interaction with capsid protein resulted in activation of Bax in the absence of apoptotic stimuli, however, release of cytochrome c from mitochondria and concomitant activation of caspase 3 did not occur. Accordingly, we propose that binding of capsid to Bax induces the formation of hetero-oligomers that are incompetent for pore formation. Importantly, data from reverse genetic studies are consistent with a scenario in which the anti-apoptotic activity of capsid protein is important for virus replication. If so, this would be among the first demonstrations showing that blocking apoptosis is important for replication of an RNA virus. Finally, it is tempting to speculate that other slowly replicating RNA viruses employ similar mechanisms to avoid killing infected cells.


Journal of Virology | 2010

The Rubella Virus Capsid Protein Inhibits Mitochondrial Import

Carolina S. Ilkow; Daniel Weckbecker; Woo Jung Cho; Stephan Meier; Martin D. Beatch; Ing Swie Goping; Johannes M. Herrmann; Tom C. Hobman

ABSTRACT The rubella virus (RV) capsid is an RNA-binding protein that functions in nucleocapsid assembly at the Golgi complex, the site of virus budding. In addition to its role in virus assembly, pools of capsid associate with mitochondria, a localization that is not consistent with virus assembly. Here we examined the interaction of capsid with mitochondria and showed that this viral protein inhibits the import and processing of mitochondrial precursor proteins in vitro. Moreover, RV-infected cells were found to contain lower intramitochondrial levels of matrix protein p32. In addition to inhibiting the translocation of substrates into mammalian mitochondria, capsid efficiently blocked import into yeast mitochondria, thereby suggesting that it acts by targeting a highly conserved component of the translocation apparatus. Finally, mutation of a cluster of five arginine residues in the amino terminus of capsid, though not interfering with its binding to mitochondria, abrogated its ability to block protein import into mitochondria. This is the first report of a viral protein that affects the import of proteins into mitochondria.


Molecular Therapy | 2015

Complement inhibition prevents oncolytic vaccinia virus neutralization in immune humans and cynomolgus macaques.

Laura Evgin; Sergio A. Acuna; Christiano Tanese de Souza; Monique Marguerie; Chantal G Lemay; Carolina S. Ilkow; C. Scott Findlay; Theresa Falls; Kelley Parato; David Hanwell; Alyssa Goldstein; Roberto Lopez; Sandra Lafrance; Caroline J. Breitbach; David Kirn; Harold Atkins; Rebecca C. Auer; Joshua M. Thurman; Gregory L. Stahl; John D. Lambris; John C. Bell; J. Andrea McCart

Oncolytic viruses (OVs) have shown promising clinical activity when administered by direct intratumoral injection. However, natural barriers in the blood, including antibodies and complement, are likely to limit the ability to repeatedly administer OVs by the intravenous route. We demonstrate here that for a prototype of the clinical vaccinia virus based product Pexa-Vec, the neutralizing activity of antibodies elicited by smallpox vaccination, as well as the anamnestic response in hyperimmune virus treated cancer patients, is strictly dependent on the activation of complement. In immunized rats, complement depletion stabilized vaccinia virus in the blood and led to improved delivery to tumors. Complement depletion also enhanced tumor infection when virus was directly injected into tumors in immunized animals. The feasibility and safety of using a complement inhibitor, CP40, in combination with vaccinia virus was tested in cynomolgus macaques. CP40 pretreatment elicited an average 10-fold increase in infectious titer in the blood early after the infusion and prolonged the time during which infectious virus was detectable in the blood of animals with preexisting immunity. Capitalizing on the complement dependence of antivaccinia antibody with adjunct complement inhibitors may increase the infectious dose of oncolytic vaccinia virus delivered to tumors in virus in immune hosts.


Cancer Cell | 2015

VEGF-Mediated Induction of PRD1-BF1/Blimp1 Expression Sensitizes Tumor Vasculature to Oncolytic Virus Infection.

Rozanne Arulanandam; Cory Batenchuk; Fernando A. Angarita; Kathryn Ottolino-Perry; Sophie Cousineau; Amelia Mottashed; Emma Burgess; Theresa Falls; Naomi De Silva; Jovian Tsang; Grant A. Howe; Marie-Claude Bourgeois-Daigneault; David P. Conrad; Manijeh Daneshmand; Caroline J. Breitbach; David Kirn; Leda Raptis; Subash Sad; Harold Atkins; Michael S. Huh; Jean-Simon Diallo; Brian D. Lichty; Carolina S. Ilkow; Fabrice Le Boeuf; Christina L. Addison; J. Andrea McCart; John C. Bell

Oncolytic viruses designed to attack malignant cells can in addition infect and destroy tumor vascular endothelial cells. We show here that this expanded tropism of oncolytic vaccinia virus to the endothelial compartment is a consequence of VEGF-mediated suppression of the intrinsic antiviral response. VEGF/VEGFR2 signaling through Erk1/2 and Stat3 leads to upregulation, nuclear localization, and activation of the transcription repressor PRD1-BF1/Blimp1. PRD1-BF1 does not contribute to the mitogenic effects of VEGF, but directly represses genes involved in type I interferon (IFN)-mediated antiviral signaling. In vivo suppression of VEGF signaling diminishes PRD1-BF1/Blimp1 expression in tumor vasculature and inhibits intravenously administered oncolytic vaccinia delivery to and consequent spread within the tumor.


Molecular Therapy | 2014

Maraba MG1 Virus Enhances Natural Killer Cell Function via Conventional Dendritic Cells to Reduce Postoperative Metastatic Disease

Jiqing Zhang; Lee-Hwa Tai; Carolina S. Ilkow; Almohanad A. Alkayyal; Abhirami A. Ananth; Christiano Tanese de Souza; Jiahu Wang; Shalini Sahi; Lundi Ly; Charles Lefebvre; Theresa Falls; Kyle B. Stephenson; Ahmad Bakur Mahmoud; Andrew P. Makrigiannis; Brian D. Lichty; John C. Bell; David F. Stojdl; Rebecca C. Auer

This study characterizes the ability of novel oncolytic rhabdoviruses (Maraba MG1) to boost natural killer (NK) cell activity. Our results demonstrate that MG1 activates NK cells via direct infection and maturation of conventional dendritic cells. Using NK depletion and conventional dendritic cells ablation studies in vivo, we established that both are required for MG1 efficacy. We further explored the efficacy of attenuated MG1 (nonreplicating MG1-UV(2min) and single-cycle replicating MG1-Gless) and demonstrated that these viruses activate conventional dendritic cells, although to a lesser extent than live MG1. This translates to equivalent abilities to remove tumor metastases only at the highest viral doses of attenuated MG1. In tandem, we characterized the antitumor ability of NK cells following preoperative administration of live and attenuated MG1. Our results demonstrates that a similar level of NK activation and reduction in postoperative tumor metastases was achieved with equivalent high viral doses concluding that viral replication is important, but not necessary for NK activation. Biochemical characterization of a panel of UV-inactivated MG1 (2-120 minutes) revealed that intact viral particle and target cell recognition are essential for NK cell-mediated antitumor responses. These findings provide mechanistic insight and preclinical rationale for safe perioperative virotherapy to effectively reduce metastatic disease following cancer surgery.

Collaboration


Dive into the Carolina S. Ilkow's collaboration.

Top Co-Authors

Avatar

John C. Bell

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar

Theresa Falls

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabrice Le Boeuf

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jean-Simon Diallo

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harold Atkins

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar

Rozanne Arulanandam

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christiano Tanese de Souza

Ottawa Hospital Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge