Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Theresa L. Gioannini is active.

Publication


Featured researches published by Theresa L. Gioannini.


Proceedings of the National Academy of Sciences of the United States of America | 2004

Isolation of an endotoxin–MD-2 complex that produces Toll-like receptor 4-dependent cell activation at picomolar concentrations

Theresa L. Gioannini; Athmane Teghanemt; DeSheng Zhang; Nathan P. Coussens; Wendie Dockstader; S. Ramaswamy; Jerrold Weiss

Host proinflammatory responses to minute amounts of endotoxins derived from many Gram-negative bacteria require the interaction of lipopolysaccharide-binding protein (LBP), CD14, Toll-like receptor 4 (TLR4) and MD-2. Optimal sensitivity to endotoxin requires an ordered series of endotoxin–protein and protein–protein interactions. At substoichiometric concentrations, LBP facilitates delivery of endotoxin aggregates to soluble CD14 (sCD14) to form monomeric endotoxin–sCD14 complexes. Subsequent interactions of endotoxin–sCD14 with TLR4 and/or MD-2 have not been specifically defined. This study reports the purification of a stable, monomeric, bioactive endotoxin–MD-2 complex generated by treatment of endotoxin–sCD14 with recombinant MD-2. Efficient generation of this complex occurred at picomolar concentrations of endotoxin and nanogram per milliliter doses of MD-2 and required presentation of endotoxin to MD-2 as a monomeric endotoxin–CD14 complex. TLR4-dependent delivery of endotoxin to human embryonic kidney (HEK) cells and cell activation at picomolar concentrations of endotoxin occurred with the purified endotoxin–MD-2 complex, but not with purified endotoxin aggregates with or without LBP and/or sCD14. The presence of excess MD-2 inhibited delivery of endotoxin–MD-2 to HEK/TLR4 cells and cell activation. These findings demonstrate that TLR4-dependent activation of host cells by picomolar concentrations of endotoxin occurs by sequential interaction and transfer of endotoxin to LBP, CD14, and MD-2 and simultaneous engagement of endotoxin and TLR4 by MD-2.


Nature | 2013

The TLR4 Antagonist, Eritoran, Protects Mice from Lethal Influenza Infection

Kari Ann Shirey; Wendy Lai; Alison J. Scott; Michael M. Lipsky; Pragnesh Mistry; Lioubov M. Pletneva; Christopher L. Karp; Jaclyn W. McAlees; Theresa L. Gioannini; Jerrold Weiss; Wilbur H. Chen; Robert K. Ernst; Daniel P. Rossignol; Fabian Gusovsky; Jorge Blanco; Stefanie N. Vogel

There is a pressing need to develop alternatives to annual influenza vaccines and antiviral agents licensed for mitigating influenza infection. Previous studies reported that acute lung injury caused by chemical or microbial insults is secondary to the generation of host-derived, oxidized phospholipid that potently stimulates Toll-like receptor 4 (TLR4)-dependent inflammation. Subsequently, we reported that Tlr4−/− mice are highly refractory to influenza-induced lethality, and proposed that therapeutic antagonism of TLR4 signalling would protect against influenza-induced acute lung injury. Here we report that therapeutic administration of Eritoran (also known as E5564)—a potent, well-tolerated, synthetic TLR4 antagonist—blocks influenza-induced lethality in mice, as well as lung pathology, clinical symptoms, cytokine and oxidized phospholipid expression, and decreases viral titres. CD14 and TLR2 are also required for Eritoran-mediated protection, and CD14 directly binds Eritoran and inhibits ligand binding to MD2. Thus, Eritoran blockade of TLR signalling represents a novel therapeutic approach for inflammation associated with influenza, and possibly other infections.


Journal of Immunology | 2005

Molecular Basis of Reduced Potency of Underacylated Endotoxins

Athmane Teghanemt; DeSheng Zhang; Erika N. Levis; Jerrold Weiss; Theresa L. Gioannini

Potent TLR4-dependent cell activation by Gram-negative bacterial endotoxins depends on sequential endotoxin-protein and protein-protein interactions with LPS-binding protein, CD14, myeloid differentiation protein 2 (MD-2), and TLR4. Previous studies have suggested that reduced agonist potency of underacylated endotoxins (i.e., tetra- or penta- vs hexa-acylated) is determined by post-CD14 interactions. To better define the molecular basis of the differences in agonist potency of endotoxins differing in fatty acid acylation, we compared endotoxins (lipooligosaccharides (LOS)) from hexa-acylated wild-type (wt), penta-acylated mutant msbB meningococcal strains as well as tetra-acylated LOS generated by treatment of wt LOS with the deacylating enzyme, acyloxyacylhydrolase. To facilitate assay of endotoxin:protein and endotoxin:cell interactions, the endotoxins were purified after metabolic labeling with [3H]- or [14C]acetate. All LOS species tested formed monomeric complexes with MD-2 in an LPS-binding protein- and CD14-dependent manner with similar efficiency. However, msbB LOS:MD-2 and acyloxyacylhydrolase-treated LOS:MD-2 were at least 10-fold less potent in inducing TLR4-dependent cell activation than wt LOS:MD-2 and partially antagonized the action of wt LOS:MD-2. These findings suggest that underacylated endotoxins produce decreased TLR4-dependent cell activation by altering the interaction of the endotoxin:MD-2 complex with TLR4 in a way that reduces receptor activation. Differences in potency among these endotoxin species is determined not by different aggregate properties, but by different properties of monomeric endotoxin:MD-2 complexes.


Journal of Biological Chemistry | 2007

Specific High Affinity Interactions of Monomeric Endotoxin·Protein Complexes with Toll-like Receptor 4 Ectodomain

Polonca Prohinar; Fabio Re; Richard Widstrom; DeSheng Zhang; Athmane Teghanemt; Jerrold Weiss; Theresa L. Gioannini

Potent Toll-like receptor 4 (TLR4) activation by endotoxin has been intensely studied, but the molecular requirements for endotoxin interaction with TLR4 are still incompletely defined. Ligand-receptor interactions involving endotoxin and TLR4 were characterized using monomeric endotoxin·protein complexes of high specific radioactivity. The binding of endotoxin·MD-2 to the TLR4 ectodomain (TLR4ECD) and transfer of endotoxin from CD14 to MD-2/TLR4ECD were demonstrated using HEK293T-conditioned medium containing TLR4ECD ± MD-2. These interactions are specific, of high affinity (KD < 300 pm), and consistent with the molecular requirements for potent cell activation by endotoxin. Both reactions result in the formation of a Mr ∼ 190,000 complex composed of endotoxin, MD-2, and TLR4ECD. CD14 facilitates transfer of endotoxin to MD-2 (TLR4) but is not a stable component of the endotoxin·MD-2/TLR4 complex. The ability to assay specific high affinity interactions of monomeric endotoxin·protein complexes with TLR4ECD should allow better definition of the structural requirements for endotoxin-induced TLR4 activation.


Journal of Biological Chemistry | 2009

Essential Roles of Hydrophobic Residues in Both MD-2 and Toll-like Receptor 4 in Activation by Endotoxin

Nuša Resman; Jožica Vašl; Alja Oblak; Primož Pristovšek; Theresa L. Gioannini; Jerrold Weiss; Roman Jerala

Gram-negative bacterial endotoxin (i.e. lipopolysaccharide (LPS)) is one of the most potent stimulants of the innate immune system, recognized by the TLR4·MD-2 complex. Direct binding to MD-2 of LPS and LPS analogues that act as TLR4 agonists or antagonists is well established, but the role of MD-2 and TLR4 in receptor activation is much less clear. We have identified residues within the hairpin of MD-2 between strands five and six that, although not contacting acyl chains of tetraacylated lipid IVa (a TLR4 antagonist), influence activation of TLR4 by hexaacylated lipid A. We show that hydrophobic residues at positions 82, 85, and 87 of MD-2 are essential both for transfer of endotoxin from CD14 to monomeric MD-2 and for TLR4 activation. We also identified a pair of conserved hydrophobic residues (Phe-440 and Phe-463) in leucine-rich repeats 16 and 17 of the TLR4 ectodomain, which are essential for activation of TLR4 by LPS. F440A or F463A mutants of TLR4 were inactive, whereas the F440W mutant retained full activity. Charge reversal of neighboring cationic groups in the TLR4 ectodomain (Lys-388 and Lys-435), in contrast, did not affect cell activation. Our mutagenesis studies are consistent with a molecular model in which Val-82, Met-85, and Leu-87 in MD-2 and distal portions of a secondary acyl chain of hexaacylated lipid A that do not fit into the hydrophobic binding pocket of MD-2 form a hydrophobic surface that interacts with Phe-440 and Phe-463 on a neighboring TLR4·MD-2·LPS complex, driving TLR4 activation.


Journal of Endotoxin Research | 2005

Monomeric endotoxin:protein complexes are essential for TLR4-dependent cell activation

Theresa L. Gioannini; Athmane Teghanemt; DeS. Zhang; E.N. Levis; Jerrold Weiss

Potent TLR4-dependent cell activation by Gram-negative bacterial endotoxin depends on sequential endotoxin—protein and protein—protein interactions with LBP, CD14, MD-2 and TLR4. LBP and CD14 combine, in an albumin-dependent fashion, to extract single endotoxin molecules from purified endotoxin aggregates (Eagg) or the bacterial outer membrane and form monomeric endotoxin:CD14 complexes that are the preferred presentation of endotoxin for transfer to MD-2. Endotoxin in endotoxin:CD14 is readily transferred to MD-2, again in an albumin-dependent manner, to form monomeric endotoxin:MD-2 complex. This monomeric endotoxin:protein complex (endotoxin:MD-2) activates TLR4 at picomolar concentrations, independently of albumin, and is, therefore, the apparent ligand in endotoxin-dependent TLR4 activation. Tetra-, penta-, and hexa-acylated forms of meningococcal endotoxin (LOS) react similarly with LBP, CD14, and MD-2 to form endotoxin:MD-2 complexes. However, tetra- and penta-acylated LOS:MD-2 complexes are less potent TLR4 agonists than hexa-acylated LOS:MD-2. This is mirrored in the reduced activity of tetra-, penta- versus hexa-acylated LOS aggregates (LOS agg) + LBP toward cells containing mCD14, MD-2, and TLR4. Therefore, changes in agonist potency of under-acylated meninigococcal LOS are determined by differences in properties of monomeric endotoxin:MD-2.


Journal of Experimental Medicine | 2012

High-mobility group nucleosome-binding protein 1 acts as an alarmin and is critical for lipopolysaccharide-induced immune responses

De Yang; Yuri V. Postnikov; Yana Li; Poonam Tewary; Gonzalo de la Rosa; Feng Wei; Dennis M. Klinman; Theresa L. Gioannini; Jerrold Weiss; Takashi Furusawa; Michael Bustin; Joost J. Oppenheim

HMGN1 is a novel alarmin that signals through TLR4 and is required for LPS-induced immune responses in vivo.


Innate Immunity | 2012

The role of microRNAs miR-200b and miR-200c in TLR4 signaling and NF-κB activation.

Erik Wendlandt; Joel W. Graff; Theresa L. Gioannini; Anton P. McCaffrey; Mary E. Wilson

Recognition of microbial products by members of the Toll-like receptor (TLR) family initiates intracellular signaling cascades that result in NF-κB activation and subsequent production of inflammatory cytokines. We explored the potential roles of microRNAs (miRNAs) in regulating TLR pathways. A target analysis approach to the TLR4 pathway adaptor molecules identified several putative targets of miR-200a, miR-200b and miR-200c. miRNA mimics were co-transfected with a NF-κB activity reporter plasmid into HEK293 cells stably expressing TLR4 (HEK293-TLR4). Mimics of both miR-200b and miR-200c, but not miR-200a, decreased NF-κB reporter activity in either untreated cells or in cells treated with endotoxin:MD2 as a TLR4 agonist. Transfection of HEK293-TLR4 cells with miR-200b or miR-200c significantly decreased expression of MyD88, whereas TLR4, IRAK-1 and TRAF-6 mRNAs were unaffected. When miR-200b or miR-200c mimics were transfected into the differentiated monocytic THP-1 cell line, the abundance of MyD88 transcripts, as well as LPS-induced expression of the pro-inflammatory molecules IL-6, CXCL9 and TNF-α were diminished. These data define miRNAs miR-200b and miR-200c as factors that modify the efficiency of TLR4 signaling through the MyD88-dependent pathway and can thus affect host innate defenses against microbial pathogens.


Biochemical and Biophysical Research Communications | 1982

Lectin binding of solubilized opiate receptors: Evidence for their glycoprotein nature

Theresa L. Gioannini; Bernard Foucaud; Jacob M. Hiller; Mary E. Hatten; Eric J. Simon

Abstract Lectin affinity chromatography was used to demonstrate that digitonin-solubilized opiate receptors contain a carbohydrate moiety. Receptors solubilized from toad, rat, chicken, bovine and human brains were retained on columns of wheat germ agglutinin (WGA)-agarose and eluted specifically with N-acetylglucosamine. The fraction retained and subsequently eluted ranged from 40–60% of the applied receptors. The eluted receptor was enriched approx. 30-fold. Evidence is presented which shows that the site of lectin interaction is functionally independent of the opiate binding site.


Mbio | 2012

Respiratory Syncytial Virus Fusion Protein-Induced Toll-Like Receptor 4 (TLR4) Signaling Is Inhibited by the TLR4 Antagonists Rhodobacter sphaeroides Lipopolysaccharide and Eritoran (E5564) and Requires Direct Interaction with MD-2

Prasad Rallabhandi; Rachel L. Phillips; Marina S. Boukhvalova; Lioubov M. Pletneva; Kari Ann Shirey; Theresa L. Gioannini; Jerrold Weiss; Jesse Chow; Lynn D. Hawkins; Stefanie N. Vogel; Jorge Blanco

ABSTRACT Respiratory syncytial virus (RSV) is a leading cause of infant mortality worldwide. Toll-like receptor 4 (TLR4), a signaling receptor for structurally diverse microbe-associated molecular patterns, is activated by the RSV fusion (F) protein and by bacterial lipopolysaccharide (LPS) in a CD14-dependent manner. TLR4 signaling by LPS also requires the presence of an additional protein, MD-2. Thus, it is possible that F protein-mediated TLR4 activation relies on MD-2 as well, although this hypothesis has not been formally tested. LPS-free RSV F protein was found to activate NF-κB in HEK293T transfectants that express wild-type (WT) TLR4 and CD14, but only when MD-2 was coexpressed. These findings were confirmed by measuring F-protein-induced interleukin 1β (IL-1β) mRNA in WT versus MD-2−/− macrophages, where MD-2−/− macrophages failed to show IL-1β expression upon F-protein treatment, in contrast to the WT. Both Rhodobacter sphaeroides LPS and synthetic E5564 (eritoran), LPS antagonists that inhibit TLR4 signaling by binding a hydrophobic pocket in MD-2, significantly reduced RSV F-protein-mediated TLR4 activity in HEK293T-TLR4–CD14–MD-2 transfectants in a dose-dependent manner, while TLR4-independent NF-κB activation by tumor necrosis factor alpha (TNF-α) was unaffected. In vitro coimmunoprecipitation studies confirmed a physical interaction between native RSV F protein and MD-2. Further, we demonstrated that the N-terminal domain of the F1 segment of RSV F protein interacts with MD-2. These data provide new insights into the importance of MD-2 in RSV F-protein-mediated TLR4 activation. Thus, targeting the interaction between MD-2 and RSV F protein may potentially lead to novel therapeutic approaches to help control RSV-induced inflammation and pathology. IMPORTANCE This study shows for the first time that the fusion (F) protein of respiratory syncytial virus (RSV), a major cause of bronchiolitis and death, particularly in infants and young children, physically interacts with the Toll-like receptor 4 (TLR4) coreceptor, MD-2, through its N-terminal domain. We show that F protein-induced TLR4 activation can be blocked by lipid A analog antagonists. This observation provides a strong experimental rationale for testing such antagonists in animal models of RSV infection for potential use in people. This study shows for the first time that the fusion (F) protein of respiratory syncytial virus (RSV), a major cause of bronchiolitis and death, particularly in infants and young children, physically interacts with the Toll-like receptor 4 (TLR4) coreceptor, MD-2, through its N-terminal domain. We show that F protein-induced TLR4 activation can be blocked by lipid A analog antagonists. This observation provides a strong experimental rationale for testing such antagonists in animal models of RSV infection for potential use in people.

Collaboration


Dive into the Theresa L. Gioannini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Polonca Prohinar

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Francesco Peri

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar

Matteo Piazza

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar

Roman Jerala

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge