Theresa L. Pedersen
United States Department of Agriculture
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Theresa L. Pedersen.
PLOS ONE | 2011
Nikolaos Psychogios; David Hau; Jun Peng; An Chi Guo; Rupasri Mandal; Souhaila Bouatra; Igor Sinelnikov; Ramanarayan Krishnamurthy; Roman Eisner; Bijaya Gautam; Nelson Young; Jianguo Xia; Craig Knox; Edison Dong; Paul Huang; Zsuzsanna Hollander; Theresa L. Pedersen; Steven R. Smith; Fiona Bamforth; Russell Greiner; Bruce M. McManus; John W. Newman; Theodore L. Goodfriend; David S. Wishart
Continuing improvements in analytical technology along with an increased interest in performing comprehensive, quantitative metabolic profiling, is leading to increased interest pressures within the metabolomics community to develop centralized metabolite reference resources for certain clinically important biofluids, such as cerebrospinal fluid, urine and blood. As part of an ongoing effort to systematically characterize the human metabolome through the Human Metabolome Project, we have undertaken the task of characterizing the human serum metabolome. In doing so, we have combined targeted and non-targeted NMR, GC-MS and LC-MS methods with computer-aided literature mining to identify and quantify a comprehensive, if not absolutely complete, set of metabolites commonly detected and quantified (with todays technology) in the human serum metabolome. Our use of multiple metabolomics platforms and technologies allowed us to substantially enhance the level of metabolome coverage while critically assessing the relative strengths and weaknesses of these platforms or technologies. Tables containing the complete set of 4229 confirmed and highly probable human serum compounds, their concentrations, related literature references and links to their known disease associations are freely available at http://www.serummetabolome.ca.
Journal of Lipid Research | 2010
Gregory C. Shearer; William S. Harris; Theresa L. Pedersen; John W. Newman
The long-chain omega-3 fatty acids (n-3 FA) eicosapentaenoic acid (EPA) and docosahexaenoic acids (DHA) have beneficial health effects, but the molecular mediators of these effects are not well characterized. Oxygenated n-3 FAs (oxylipins) may be an important class of mediators. Members of this chemical class include epoxides, alcohols, diols, and ketones, many of which have bioactivity in vitro. Neither the presence of n-3 oxylipins in human plasma nor the effect of n-3 FA ingestion on their levels has been documented. We measured plasma oxylipins derived from both the n-3 and n-6 FA classes in healthy volunteers (n = 10) before and after 4 weeks of treatment with prescription n-3 FA ethyl esters (4 g/day). At baseline, EPA and DHA oxylipins were detected in low (1-50 nM) range, with alcohols > epoxides >or= diols. Treatment increased n-3 oxylipin levels 2- to 5-fold and reduced selected n-6 oxylipins by approximately 20%. This is the first documentation that endogenous n-3 oxylipin levels can be modulated by n-3 FA treatment in humans. The extent to which the beneficial cardiovascular effects of n-3 FAs are mediated by increased n-3 and/or reduced n-6 oxylipin levels remains to be explored.
Journal of Lipid Research | 2012
Alison H. Keenan; Theresa L. Pedersen; Kristi Fillaus; Mark K. Larson; Gregory C. Shearer; John W. Newman
A subjects baseline FA composition may influence the ability of dietary highly unsaturated omega-3 FAs (n3-HUFA) to change circulating profiles of esterified FAs and their oxygenated metabolites. This study evaluates the influence of basal n3-HUFA and n3-oxylipin status on the magnitude of response to n3-HUFA consumption. Blood was collected from fasting subjects (n = 30) before and after treatment (4 weeks; 11 ± 2 mg/kg/day n3-HUFA ethyl esters). Esterified FAs were quantified in erythrocytes, platelets, and plasma by GC-MS. Esterified oxylipins were quantified in plasma by LC-MS/MS. Treatment with n3-HUFAs increased n3-HUFAs and decreased n6-HUFAs in all reservoirs and increased plasma n3-oxylipins without significantly changing n6-oxylipin concentrations. As subject basal n3-HUFAs increased, treatment-associated changes decreased, and this behavior was reflected in the percentage of 20:5n3 + 22:6n3 in red blood cell membrane FAs (i.e., the omega-3 index). To maintain an omega-3 index of 8% and thus reduce cardiovascular disease risk, our analyses suggest a maintenance dose of 7 mg/kg/day n3-HUFA ethyl esters for a 70-kg individual. These results suggest that the basal n3 index may have clinical utility to establish efficacious therapeutic experimental feeding regimens and to evaluate the USDA Dietary Guidelines recommendations for n3-HUFA consumption.
PLOS ONE | 2012
Dmitry Grapov; Sean H. Adams; Theresa L. Pedersen; W. Timothy Garvey; John W. Newman
Type 2 diabetes has profound effects on metabolism that can be detected in plasma. While increases in circulating non-esterified fatty acids (NEFA) are well-described in diabetes, effects on signaling lipids have received little attention. Oxylipins and endocannabinoids are classes of bioactive fatty acid metabolites with many structural members that influence insulin signaling, adipose function and inflammation through autocrine, paracrine and endocrine mechanisms. To link diabetes-associated changes in plasma NEFA and signaling lipids, we quantitatively targeted >150 plasma lipidome components in age- and body mass index-matched, overweight to obese, non-diabetic (n = 12) and type 2 diabetic (n = 43) African-American women. Diabetes related NEFA patterns indicated ∼60% increase in steroyl-CoA desaturase activity and ∼40% decrease in very long chain polyunsaturated fatty acid chain shortening, patterns previously associated with the development of nonalcoholic fatty liver disease. Further, epoxides and ketones of eighteen carbon polyunsaturated fatty acids were elevated >80% in diabetes and strongly correlated with changes in NEFA, consistent with their liberation during adipose lipolysis. Endocannabinoid behavior differed by class with diabetes increasing an array of N-acylethanolamides which were positively correlated with pro-inflammatory 5-lipooxygenase-derived metabolites, while monoacylglycerols were negatively correlated with body mass. These results clearly show that diabetes not only results in an increase in plasma NEFA, but shifts the plasma lipidomic profiles in ways that reflect the biochemical and physiological changes of this pathological state which are independent of obesity associated changes.
PLOS ONE | 2014
Cécile Gladine; John W. Newman; Thierry Durand; Theresa L. Pedersen; Jean-Marie Galano; Céline Demougeot; Olivier Berdeaux; Estelle Pujos-Guillot; Andrzej Mazur; Blandine Comte
Abstract The anti-atherogenic effects of omega 3 fatty acids, namely eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) are well recognized but the impact of dietary intake on bioactive lipid mediator profiles remains unclear. Such a profiling effort may offer novel targets for future studies into the mechanism of action of omega 3 fatty acids. The present study aimed to determine the impact of DHA supplementation on the profiles of polyunsaturated fatty acids (PUFA) oxygenated metabolites and to investigate their contribution to atherosclerosis prevention. A special emphasis was given to the non-enzymatic metabolites knowing the high susceptibility of DHA to free radical-mediated peroxidation and the increased oxidative stress associated with plaque formation. Atherosclerosis prone mice (LDLR−/−) received increasing doses of DHA (0, 0.1, 1 or 2% of energy) during 20 weeks leading to a dose-dependent reduction of atherosclerosis (R2 = 0.97, p = 0.02), triglyceridemia (R2 = 0.97, p = 0.01) and cholesterolemia (R2 = 0.96, p<0.01). Targeted lipidomic analyses revealed that both the profiles of EPA and DHA and their corresponding oxygenated metabolites were substantially modulated in plasma and liver. Notably, the hepatic level of F4-neuroprostanes, a specific class of DHA peroxidized metabolites, was strongly correlated with the hepatic DHA level. Moreover, unbiased statistical analysis including correlation analyses, hierarchical cluster and projection to latent structure discriminate analysis revealed that the hepatic level of F4-neuroprostanes was the variable most negatively correlated with the plaque extent (p<0.001) and along with plasma EPA-derived diols was an important mathematical positive predictor of atherosclerosis prevention. Thus, oxygenated n-3 PUFAs, and F4-neuroprostanes in particular, are potential biomarkers of DHA-associated atherosclerosis prevention. While these may contribute to the anti-atherogenic effects of DHA, further in vitro investigations are needed to confirm such a contention and to decipher the molecular mechanisms of action.
Atherosclerosis | 2011
Karl Gertow; Elena Nobili; Lasse Folkersen; John W. Newman; Theresa L. Pedersen; Johan Ekstrand; Jesper Swedenborg; Hartmut Kühn; Craig E. Wheelock; Göran K. Hansson; Ulf Hedin; Jesper Z. Haeggström; Anders Gabrielsen
Lipoxygenase (ALOX) enzymes are implicated in both pro- and anti-atherogenic processes. The aim of this study was to investigate mRNA expression of 12- and 15-lipoxygenases (ALOX12, ALOX12B, ALOX15, ALOX15B) and the atypical ALOXE3 in human carotid atherosclerotic lesions, in relation to cerebrovascular symptoms and risk factors. The Biobank of Karolinska Endarterectomies (BiKE) collection of human carotid plaque tissue and associated clinical data was utilized (n=132). Lesion mRNA levels were analyzed by TaqMan qPCR (n=132) and microarray hybridization (n=77). Of the investigated mRNAs, only ALOX15B (15-LOX-2; epidermis-type 15-LOX) was readily detected in all plaque samples by qPCR, and thus suitable for quantitative statistical evaluation. ALOX12, ALOX12B, ALOX15 and ALOXE3 were detected with lower frequency and at lower levels, or virtually undetected. Microarray analysis confirmed ALOX15B as the most abundant 12- or 15-lipoxygenase mRNA in carotid lesions. Comparing plaques with or without attributable cerebrovascular symptoms (amaurosis fugax, transient ischemic attack, or stroke), ALOX15B mRNA levels were higher in symptomatic than asymptomatic plaques (1.31 [1.11-1.56], n=102; and 0.79 [0.55-1.15], n=30, respectively; p=0.008; mean [95% CI], arbitrary units). Multiple regression analysis confirmed symptomatic/asymptomatic status as a significant determinant of ALOX15B mRNA levels, independently of potentially confounding factors. Immunohistochemical analyses showed abundant ALOX15B expression in macrophage-rich areas of carotid lesions, and lipidomic analyses demonstrated the presence of typical ALOX15B products in plaque tissue. In summary, we observed associations between high ALOX15B expression in carotid lesions and a history of cerebrovascular symptoms. These findings suggest a link between ALOX15B and atherothrombotic events that merits further investigation.
The FASEB Journal | 2008
Krairerk Athirakul; J. Alyce Bradbury; Joan P. Graves; Laura M. DeGraff; Jixiang Ma; Yun Zhao; John F. Couse; Raymond Quigley; David R. Harder; Xueying Zhao; John D. Imig; Theresa L. Pedersen; John W. Newman; Bruce D. Hammock; Alan J. Conley; Kenneth S. Korach; Thomas M. Coffman; Darryl C. Zeldin
The cytochrome P450 (CYP) enzymes participate in a wide range of biochemical functions, including metabolism of arachidonic acid and steroid hormones. Mouse CYP2J5 is abundant in the kidney where its products, the cis‐epoxyeicosatrienoic acids (EETs), modulate sodium transport and vascular tone. To define the physiological role of CYP2J5 in the kidney, knockout mice were generated using a conventional gene targeting approach. Cyp2j5 (‐/‐) mice develop normally and exhibit no overt renal pathology. While renal EET biosynthesis was apparently unaffected by the absence of CYP2J5, deficiency of this CYP in female mice was associated with increased blood pressure, enhanced proximal tubular transport rates, and exaggerated afferent arteriolar responses to angiotensin II and endothelin I. Interestingly, plasma 17β‐estradiol levels were reduced in female Cyp2j5 (‐/‐) mice and estrogen replacement restored blood pressure and vascular responsiveness to normal levels. There was no evidence of enhanced estrogen metabolism, or altered expression or activities of steroidogenic enzymes in female Cyp2j5 (‐/‐) mice, but their plasma levels of luteinizing hormone and follicle stimulating hormone were inappropriately low. Together, our findings illustrate a sex‐specific role for CYP2J5 in regulation of blood pressure, proximal tubular transport, and afferent arteriolar responsiveness via an estrogen‐dependent mechanism.— Athirakul, K., Bradbury, J. A., Graves, J. P., DeGraff, L. M., Ma, J., Zhao, Y., Couse, J. F., Quigley, R., Harder, D. R., Zhao, X., Imig, J. D., Pedersen, T. L., Newman, J. W., Hammock, B. D., Conley, A. J., Korach, K. S., Coffman, T. M., Zeldin, D. C. Increased blood pressure in mice lacking cytochrome P450 2J5. FASEB J. 22, 4096–4108 (2008)
BMC Medical Genomics | 2010
Marjan van Erk; Suzan Wopereis; Carina M. Rubingh; Trinette van Vliet; Elwin Verheij; Nicole Hp Cnubben; Theresa L. Pedersen; John W. Newman; Age K. Smilde; Jan van der Greef; Henk F. J. Hendriks; Ben van Ommen
BackgroundChronic systemic low-grade inflammation in obese subjects is associated with health complications including cardiovascular diseases, insulin resistance and diabetes. Reducing inflammatory responses may reduce these risks. However, available markers of inflammatory status inadequately describe the complexity of metabolic responses to mild anti-inflammatory therapy.MethodsTo address this limitation, we used an integrative omics approach to characterize modulation of inflammation in overweight men during an intervention with the non-steroidal anti-inflammatory drug diclofenac. Measured parameters included 80 plasma proteins, >300 plasma metabolites (lipids, free fatty acids, oxylipids and polar compounds) and an array of peripheral blood mononuclear cells (PBMC) gene expression products. These measures were submitted to multivariate and correlation analysis and were used for construction of biological response networks.ResultsA panel of genes, proteins and metabolites, including PGE2 and TNF-alpha, were identified that describe a diclofenac-response network (68 genes in PBMC, 1 plasma protein and 4 plasma metabolites). Novel candidate markers of inflammatory modulation included PBMC expression of annexin A1 and caspase 8, and the arachidonic acid metabolite 5,6-DHET.ConclusionIn this study the integrated analysis of a wide range of parameters allowed the development of a network of markers responding to inflammatory modulation, thereby providing insight into the complex process of inflammation and ways to assess changes in inflammatory status associated with obesity.Trial registrationThe study is registered as NCT00221052 in clinicaltrials.gov database.
Analyst | 2013
Iwan W. Schie; Lena Nolte; Theresa L. Pedersen; Zach Smith; Jian Wu; Idir Yahiatène; John W. Newman; Thomas Huser
Cellular lipid droplets are the least studied and least understood cellular organelles in eukaryotic and prokaryotic cells. Despite a significant body of research studying the physiology of lipid droplets it has not yet been possible to fully determine the composition of individual cellular lipid droplets. In this paper we use Raman spectroscopy on single cellular lipid droplets and least-squares fitting of pure fatty acid spectra to determine the composition of individual lipid droplets in cells after treatment with different ratios of oleic and palmitic acid. We validate the results of the Raman spectroscopy-based single lipid droplet analysis with results obtained by gas chromatography analysis of millions of cells, and find that our approach can accurately predict the relative amount of a specific fatty acid in the lipid droplet. Based on these results we show that the fatty acid composition in individual lipid droplets is on average similar to that of all lipid droplets found in the sample. Furthermore, we expand this approach to the investigation of the lipid composition in single cellular peroxisomes. We determine the location of cellular peroxisomes based on two-photon excitation fluorescence (TPEF) imaging of peroxisomes labeled with the green fluorescent protein, and successive Raman spectroscopy of peroxisomes. We find that in some cases peroxisomes can produce a detectable CARS signal, and that the peroxisomal Raman spectra exhibit an oleic acid-like signature.
Alcohol | 2015
Julie A. Kable; Claire D. Coles; Carl L. Keen; Janet Y. Uriu-Adams; Kenneth Lyons Jones; Lyubov Yevtushok; Yaroslav Kulikovsky; Wladimir Wertelecki; Theresa L. Pedersen; Christina D. Chambers
The potential of micronutrients to ameliorate the impact of prenatal alcohol exposure (PAE) was explored in a clinical trial conducted in Ukraine. Cardiac orienting responses (ORs) during a habituation/dishabituation learning paradigm were obtained from 6 to 12 month-olds to assess neurophysiological encoding and memory. Women who differed in prenatal alcohol use were recruited during pregnancy and assigned to a group (No study-provided supplements, multivitamin/mineral supplement, or multivitamin/mineral supplement plus choline supplement). Heart rate was collected for 30 s prior to stimulus onset and 12 s post-stimulus onset. Difference values (∆HR) for the first 3 trials of each condition were aggregated for analysis. Gestational blood samples were collected to assess maternal nutritional status and changes as a function of the intervention. Choline supplementation resulted in a greater ∆HR on the visual habituation trials for all infants and for the infants with no PAE on the dishabituation trials. The latency of the response was reduced in both conditions for all infants whose mothers received choline supplementation. Change in gestational choline level was positively related to ∆HR during habituation trials and levels of one choline metabolite, dimethylglycine (DMG), predicted ∆HR during habituation trials and latency of responses. A trend was found between DMG and ∆HR on the dishabituation trials and latency of the response. Supplementation did not affect ORs to auditory stimuli. Choline supplementation when administered together with routinely recommended multivitamin/mineral prenatal supplements during pregnancy may provide a beneficial impact to basic learning mechanisms involved in encoding and memory of environmental events in alcohol-exposed pregnancies as well as non- or low alcohol-exposed pregnancies. Changes in maternal nutrient status suggested that one mechanism by which choline supplementation may positively impact brain development is through prevention of fetal alcohol-related depletion of DMG, a metabolic nutrient that can protect against overproduction of glycine, during critical periods of neurogenesis.