Theresa M. Ward
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Theresa M. Ward.
Nature Communications | 2013
Alejandro Martin-Montalvo; Evi M. Mercken; Sarah J. Mitchell; Hector H. Palacios; Patricia L. Mote; Morten Scheibye-Knudsen; Ana P. Gomes; Theresa M. Ward; Robin K. Minor; Marie-José Blouin; Matthias Schwab; Michael Pollak; Yongqing Zhang; Yinbing Yu; Kevin G. Becker; Vilhelm A. Bohr; Donald K. Ingram; David A. Sinclair; Norman S. Wolf; Stephen R. Spindler; Michel Bernier; Rafael de Cabo
Metformin is a drug commonly prescribed to treat patients with type 2 diabetes. Here we show that long-term treatment with metformin (0.1% w/w in diet) starting at middle age extends healthspan and lifespan in male mice, while a higher dose (1% w/w) was toxic. Treatment with metformin mimics some of the benefits of calorie restriction, such as improved physical performance, increased insulin sensitivity, and reduced LDL and cholesterol levels without a decrease in caloric intake. At a molecular level, metformin increases AMP-activated protein kinase activity and increases antioxidant protection, resulting in reductions in both oxidative damage accumulation and chronic inflammation. Our results indicate that these actions may contribute to the beneficial effects of metformin on healthspan and lifespan. These findings are in agreement with current epidemiological data and raise the possibility of metformin-based interventions to promote healthy aging.
Cell Reports | 2014
Sarah J. Mitchell; Alejandro Martin-Montalvo; Evi M. Mercken; Hector H. Palacios; Theresa M. Ward; Gelareh Abulwerdi; Robin K. Minor; George P. Vlasuk; James L. Ellis; David A. Sinclair; John A. Dawson; David B. Allison; Yongqing Zhang; Kevin G. Becker; Michel Bernier; Rafael de Cabo
The prevention or delay of the onset of age-related diseases prolongs survival and improves quality of life while reducing the burden on the health care system. Activation of sirtuin 1 (SIRT1), an NAD(+)-dependent deacetylase, improves metabolism and confers protection against physiological and cognitive disturbances in old age. SRT1720 is a specific SIRT1 activator that has health and lifespan benefits in adult mice fed a high-fat diet. We found extension in lifespan, delayed onset of age-related metabolic diseases, and improved general health in mice fed a standard diet after SRT1720 supplementation. Inhibition of proinflammatory gene expression in both liver and muscle of SRT1720-treated animals was noted. SRT1720 lowered the phosphorylation of NF-κB pathway regulators in vitro only when SIRT1 was functionally present. Combined with our previous work, the current study further supports the beneficial effects of SRT1720 on health across the lifespan in mice.
Scientific Reports | 2011
Robin K. Minor; Joseph A. Baur; Ana P. Gomes; Theresa M. Ward; Anna Csiszar; Evi M. Mercken; Kotb Abdelmohsen; Yu Kyong Shin; Carles Cantó; Morten Scheibye-Knudsen; Melissa Krawczyk; Pablo M. Irusta; Alejandro Martin-Montalvo; Basil P. Hubbard; Yongqing Zhang; Elin Lehrmann; Alexa A. White; Nathan L. Price; William R. Swindell; Kevin J. Pearson; Kevin G. Becker; Vilhelm A. Bohr; Myriam Gorospe; Josephine M. Egan; Mark I. Talan; Johan Auwerx; Christoph H. Westphal; James L. Ellis; Zoltan Ungvari; George P. Vlasuk
Sirt1 is an NAD+-dependent deacetylase that extends lifespan in lower organisms and improves metabolism and delays the onset of age-related diseases in mammals. Here we show that SRT1720, a synthetic compound that was identified for its ability to activate Sirt1 in vitro, extends both mean and maximum lifespan of adult mice fed a high-fat diet. This lifespan extension is accompanied by health benefits including reduced liver steatosis, increased insulin sensitivity, enhanced locomotor activity and normalization of gene expression profiles and markers of inflammation and apoptosis, all in the absence of any observable toxicity. Using a conditional SIRT1 knockout mouse and specific gene knockdowns we show SRT1720 affects mitochondrial respiration in a Sirt1- and PGC-1α-dependent manner. These findings indicate that SRT1720 has long-term benefits and demonstrate for the first time the feasibility of designing novel molecules that are safe and effective in promoting longevity and preventing multiple age-related diseases in mammals.
Cell Reports | 2013
J. Julie Wu; Jie Liu; Edmund Chen; Jennifer J. Wang; Liu Cao; Nisha Narayan; Marie M. Fergusson; Ilsa I. Rovira; Michele D. Allen; Danielle A. Springer; Cory U. Lago; Shuling Zhang; Wendy Dubois; Theresa M. Ward; Rafael DeCabo; Oksana Gavrilova; Beverly A. Mock; Toren Finkel
We analyzed aging parameters using a mechanistic target of rapamycin (mTOR) hypomorphic mouse model. Mice with two hypomorphic (mTOR(Δ/Δ)) alleles are viable but express mTOR at approximately 25% of wild-type levels. These animals demonstrate reduced mTORC1 and mTORC2 activity and exhibit an approximately 20% increase in median survival. While mTOR(Δ/Δ) mice are smaller than wild-type mice, these animals do not demonstrate any alterations in normalized food intake, glucose homeostasis, or metabolic rate. Consistent with their increased lifespan, mTOR(Δ/Δ) mice exhibited a reduction in a number of aging tissue biomarkers. Functional assessment suggested that, as mTOR(Δ/Δ) mice age, they exhibit a marked functional preservation in many, but not all, organ systems. Thus, in a mammalian model, while reducing mTOR expression markedly increases overall lifespan, it affects the age-dependent decline in tissue and organ function in a segmental fashion.
Cell Metabolism | 2013
Yolanda Jimenez-Gomez; Julie A. Mattison; Kevin J. Pearson; Alejandro Martin-Montalvo; Hector H. Palacios; Alex M. Sossong; Theresa M. Ward; Caitlin M. Younts; Kaitlyn N. Lewis; Joanne S. Allard; Dan L. Longo; Jonathan P. Belman; María M. Malagón; Plácido Navas; Mitesh Sanghvi; Ruin Moaddel; Edward M. Tilmont; Richard Herbert; Christopher H. Morrell; Josephine M. Egan; Joseph A. Baur; Luigi Ferrucci; Jonathan S. Bogan; Michel Bernier; Rafael de Cabo
Obesity is associated with a chronic, low-grade, systemic inflammation that may contribute to the development of insulin resistance and type 2 diabetes. Resveratrol, a natural compound with anti-inflammatory properties, is shown to improve glucose tolerance and insulin sensitivity in obese mice and humans. Here, we tested the effect of a 2-year resveratrol administration on proinflammatory profile and insulin resistance caused by a high-fat, high-sugar (HFS) diet in white adipose tissue (WAT) from rhesus monkeys. Resveratrol supplementation (80 and 480 mg/day for the first and second year, respectively) decreased adipocyte size, increased sirtuin 1 expression, decreased NF-κB activation, and improved insulin sensitivity in visceral, but not subcutaneous, WAT from HFS-fed animals. These effects were reproduced in 3T3-L1 adipocytes cultured in media supplemented with serum from monkeys fed HFS ± resveratrol diets. In conclusion, chronic administration of resveratrol exerts beneficial metabolic and inflammatory adaptations in visceral WAT from diet-induced obese monkeys.
Cell Metabolism | 2014
Morten Scheibye-Knudsen; Sarah J. Mitchell; Evandro Fei Fang; Teruaki Iyama; Theresa M. Ward; James Wang; Christopher Dunn; Nagendra S. Singh; Sebastian Veith; Mahdi Hasan-Olive; Aswin Mangerich; Mark A. Wilson; Mark P. Mattson; Linda H. Bergersen; Victoria C. Cogger; Alessandra Warren; David G. Le Couteur; Ruin Moaddel; David M. Wilson; Deborah L. Croteau; Rafael de Cabo; Vilhelm A. Bohr
Cockayne syndrome (CS) is an accelerated aging disorder characterized by progressive neurodegeneration caused by mutations in genes encoding the DNA repair proteins CS group A or B (CSA or CSB). Since dietary interventions can alter neurodegenerative processes, Csb(m/m) mice were given a high-fat, caloric-restricted, or resveratrol-supplemented diet. High-fat feeding rescued the metabolic, transcriptomic, and behavioral phenotypes of Csb(m/m) mice. Furthermore, premature aging in CS mice, nematodes, and human cells results from aberrant PARP activation due to deficient DNA repair leading to decreased SIRT1 activity and mitochondrial dysfunction. Notably, β-hydroxybutyrate levels are increased by the high-fat diet, and β-hydroxybutyrate, PARP inhibition, or NAD(+) supplementation can activate SIRT1 and rescue CS-associated phenotypes. Mechanistically, CSB can displace activated PARP1 from damaged DNA to limit its activity. This study connects two emerging longevity metabolites, β-hydroxybutyrate and NAD(+), through the deacetylase SIRT1 and suggests possible interventions for CS.
Cell Metabolism | 2016
Sarah J. Mitchell; Morten Scheibye-Knudsen; Evandro Fei Fang; Miguel A. Aon; José A. González-Reyes; Sonia Cortassa; Susmita Kaushik; Marta Gonzalez-Freire; Bindi Patel; Devin Wahl; Ahmed Ali; Miguel Calvo-Rubio; María I. Burón; Vincent Guiterrez; Theresa M. Ward; Hector H. Palacios; Huan Cai; David W. Frederick; Christopher Hine; Filomena Broeskamp; Lukas Habering; John A Dawson; T. Mark Beasley; Junxiang Wan; Yuji Ikeno; Gene Hubbard; Kevin G. Becker; Yongqing Zhang; Vilhelm A. Bohr; Dan L. Longo
Calorie restriction (CR) is the most robust non-genetic intervention to delay aging. However, there are a number of emerging experimental variables that alter CR responses. We investigated the role of sex, strain, and level of CR on health and survival in mice. CR did not always correlate with lifespan extension, although it consistently improved health across strains and sexes. Transcriptional and metabolomics changes driven by CR in liver indicated anaplerotic filling of the Krebs cycle together with fatty acid fueling of mitochondria. CR prevented age-associated decline in the liver proteostasis network while increasing mitochondrial number, preserving mitochondrial ultrastructure and function with age. Abrogation of mitochondrial function negated life-prolonging effects of CR in yeast and worms. Our data illustrate the complexity of CR in the context of aging, with a clear separation of outcomes related to health and survival, highlighting complexities of translation of CR into human interventions.
Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2010
Robin K. Minor; Joanne S. Allard; Caitlin M. Younts; Theresa M. Ward; Rafael de Cabo
The societal impact of obesity, diabetes, and other metabolic disorders continues to rise despite increasing evidence of their negative long-term consequences on health span, longevity, and aging. Unfortunately, dietary management and exercise frequently fail as remedies, underscoring the need for the development of alternative interventions to successfully treat metabolic disorders and enhance life span and health span. Using calorie restriction (CR)-which is well known to improve both health and longevity in controlled studies-as their benchmark, gerontologists are coming closer to identifying dietary and pharmacological therapies that may be applicable to aging humans. This review covers some of the more promising interventions targeted to affect pathways implicated in the aging process as well as variations on classical CR that may be better suited to human adaptation.
Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2018
Alberto Diaz-Ruiz; Andrea Di Francesco; Bethany A. Carboneau; Sophia R Levan; Kevin J. Pearson; Nathan L. Price; Theresa M. Ward; Michel Bernier; Rafael de Cabo; Evi M. Mercken
Caloric restriction (CR) is the most potent nonpharmacological intervention known to both protect against carcinogenesis and delay aging in laboratory animals. There is a growing number of anticarcinogens and CR mimetics that activate NAD(P)H:quinone oxidoreductase 1 (NQO1). We have previously shown that NQO1, an antioxidant enzyme that acts as an energy sensor through modulation of intracellular redox and metabolic state, is upregulated by CR. Here, we used NQO1-knockout (KO) mice to investigate the role of NQO1 in both the aging process and tumor susceptibility, specifically in the context of CR. We found that NQO1 is not essential for the beneficial effects of CR on glucose homeostasis, physical performance, metabolic flexibility, life-span extension, and (unlike our previously observation with Nrf2) chemical-induced tumorigenesis.
Scientific Reports | 2013
Robin K. Minor; Joseph A. Baur; Ana P. Gomes; Theresa M. Ward; Anna Csiszar; Evi M. Mercken; Kotb Abdelmohsen; Yu-Kyong Shin; Carles Cantó; Morten Scheibye-Knudsen; Melissa Krawczyk; Pablo M. Irusta; Alejandro Martin-Montalvo; Basil P. Hubbard; Yongqing Zhang; Elin Lehrmann; Alexa A. White; Nathan L. Price; William R. Swindell; Kevin J. Pearson; Kevin G. Becker; Vilhelm A. Bohr; Myriam Gorospe; Josephine M. Egan; Mark I. Talan; Johan Auwerx; Christoph H. Westphal; James L. Ellis; Zoltan Ungvari; George P. Vlasuk