Thibaut Vidal
Pontifical Catholic University of Rio de Janeiro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thibaut Vidal.
Operations Research | 2012
Thibaut Vidal; Teodor Gabriel Crainic; Michel Gendreau; Nadia Lahrichi; Walter Rei
We propose an algorithmic framework that successfully addresses three vehicle routing problems: the multidepot VRP, the periodic VRP, and the multidepot periodic VRP with capacitated vehicles and constrained route duration. The metaheuristic combines the exploration breadth of population-based evolutionary search, the aggressive-improvement capabilities of neighborhood-based metaheuristics, and advanced population-diversity management schemes. Extensive computational experiments show that the method performs impressively in terms of computational efficiency and solution quality, identifying either the best known solutions, including the optimal ones, or new best solutions for all currently available benchmark instances for the three problem classes. The proposed method also proves extremely competitive for the capacitated VRP.
Computers & Operations Research | 2013
Thibaut Vidal; Teodor Gabriel Crainic; Michel Gendreau; Christian Prins
The paper presents an efficient Hybrid Genetic Search with Advanced Diversity Control for a large class of time-constrained vehicle routing problems, introducing several new features to manage the temporal dimension. New move evaluation techniques are proposed, accounting for penalized infeasible solutions with respect to time-window and duration constraints, and allowing to evaluate moves from any classical neighbourhood based on arc or node exchanges in amortized constant time. Furthermore, geometric and structural problem decompositions are developed to address efficiently large problems. The proposed algorithm outperforms all current state-of-the-art approaches on classical literature benchmark instances for any combination of periodic, multi-depot, site-dependent, and duration-constrained vehicle routing problem with time windows.
European Journal of Operational Research | 2013
Thibaut Vidal; Teodor Gabriel Crainic; Michel Gendreau; Christian Prins
The attributes of vehicle routing problems are additional characteristics or constraints that aim to better take into account the specificities of real applications. The variants thus formed are supported by a well-developed literature, including a large variety of heuristics. This article first reviews the main classes of attributes, providing a survey of heuristics and meta-heuristics for Multi-Attribute Vehicle Routing Problems (MAVRP). It then takes a closer look at the concepts of 64 remarkable meta-heuristics, selected objectively for their outstanding performance on 15 classic MAVRP with different attributes. This cross-analysis leads to the identification of “winning strategies” in designing effective heuristics for MAVRP. This is an important step in the development of general and efficient solution methods for dealing with the large range of vehicle routing variants.
European Journal of Operational Research | 2014
Thibaut Vidal; Teodor Gabriel Crainic; Michel Gendreau; Christian Prins
Vehicle routing attributes are extra characteristics and decisions that complement the academic problem formulations and aim to properly account for real-life application needs. Hundreds of methods have been introduced in recent years for specific attributes, but the development of a single, general-purpose algorithm, which is both efficient and applicable to a wide family of variants remains a considerable challenge. Yet, such a development is critical for understanding the proper impact of attributes on resolution approaches, and to answer the needs of actual applications. This paper contributes towards addressing these challenges with a component-based design for heuristics, targeting multi-attribute vehicle routing problems, and an efficient general-purpose solver. The proposed Unified Hybrid Genetic Search metaheuristic relies on problem-independent unified local search, genetic operators, and advanced diversity management methods. Problem specifics are confined to a limited part of the method and are addressed by means of assignment, sequencing, and route-evaluation components, which are automatically selected and adapted and provide the fundamental operators to manage attribute specificities. Extensive computational experiments on 29 prominent vehicle routing variants, 42 benchmark instance sets and overall 1099 instances, demonstrate the remarkable performance of the method which matches or outperforms the current state-of-the-art problem-tailored algorithms. Thus, generality does not necessarily go against efficiency for these problem classes.
European Journal of Operational Research | 2014
Diego Cattaruzza; Nabil Absi; Dominique Feillet; Thibaut Vidal
We consider the Multi Trip Vehicle Routing Problem, in which a set of geographically scattered customers have to be served by a fleet of vehicles. Each vehicle can perform several trips during the working day. The objective is to minimize the total travel time while respecting temporal and capacity constraints.
European Journal of Operational Research | 2012
Marcos Melo Silva; Anand Subramanian; Thibaut Vidal; Luiz Satoru Ochi
The Minimum Latency Problem (MLP) is a variant of the Traveling Salesman Problem which aims to minimize the sum of arrival times at vertices. The problem arises in a number of practical applications such as logistics for relief supply, scheduling and data retrieval in computer networks. This paper introduces a simple metaheuristic for the MLP, based on a greedy randomized approach for solution construction and iterated variable neighborhood descent with random neighborhood ordering for solution improvement. Extensive computational experiments on nine sets of benchmark instances involving up to 1000 customers demonstrate the good performance of the method, which yields solutions of higher quality in less computational time when compared to the current best approaches from the literature. Optimal solutions, known for problems with up to 50 customers, are also systematically obtained in a fraction of seconds.
European Journal of Operational Research | 2015
Raphael Kramer; Anand Subramanian; Thibaut Vidal; Lucídio dos Anjos Formiga Cabral
This paper deals with the Pollution-Routing Problem (PRP), a Vehicle Routing Problem (VRP) with environmental considerations, recently introduced in the literature by Bektas and Laporte (2011) [Transportation Research Part B: Methodological 45 (8), 1232–1250]. The objective is to minimize operational and environmental costs while respecting capacity constraints and service time windows. Costs are based on driver wages and fuel consumption, which depends on many factors, such as travel distance and vehicle load. The vehicle speeds are considered as decision variables. They complement routing decisions, impacting the total cost, the travel time between locations, and thus the set of feasible routes. We propose a method which combines a local search-based metaheuristic with an integer programming approach over a set covering formulation and a recursive speed-optimization algorithm. This hybridization enables to integrate more tightly route and speed decisions. Moreover, two other “green” VRP variants, the Fuel Consumption VRP (FCVRP) and the Energy Minimizing VRP (EMVRP), are addressed, as well as the VRP with time windows (VRPTW) with distance minimization. The proposed method compares very favorably with previous algorithms from the literature, and new improved solutions are reported for all considered problems.
Expert Systems With Applications | 2013
Renaud Masson; Thibaut Vidal; Julien Michallet; Puca Huachi Vaz Penna; Vinicius Petrucci; Anand Subramanian; Hugues Dubedout
This paper proposes an efficient Multi-Start Iterated Local Search for Packing Problems (MS-ILS-PPs) metaheuristic for Multi-Capacity Bin Packing Problems (MCBPP) and Machine Reassignment Problems (MRP). The MCBPP is a generalization of the classical bin-packing problem in which the machine (bin) capacity and task (item) sizes are given by multiple (resource) dimensions. The MRP is a challenging and novel optimization problem, aimed at maximizing the usage of available machines by reallocating tasks/processes among those machines in a cost-efficient manner, while fulfilling several capacity, conflict, and dependency-related constraints. The proposed MS-ILS-PP approach relies on simple neighborhoods as well as problem-tailored shaking procedures. We perform computational experiments on MRP benchmark instances containing between 100 and 50,000 processes. Near-optimum multi-resource allocation and scheduling solutions are obtained while meeting specified processing-time requirements (on the order of minutes). In particular, for 9/28 instances with more than 1000 processes, the gap between the solution value and a lower bound measure is smaller than 0.1%. Our optimization method is also applied to solve classical benchmark instances for the MCBPP, yielding the best known solutions and optimum ones in most cases. In addition, several upper bounds for non-solved problems were improved.
European Journal of Operational Research | 2014
Thibaut Vidal; Teodor Gabriel Crainic; Michel Gendreau; Christian Prins
Vehicle routing variants with multiple depots and mixed fleet present intricate combinatorial aspects related to sequencing choices, vehicle type choices, depot choices, and depots positioning. This paper introduces a dynamic programming methodology for efficiently evaluating compound neighborhoods combining sequence-based moves with an optimal choice of vehicle and depot, and an optimal determination of the first customer to be visited in the route, called rotation. The assignment choices, making the richness of the problem, are thus no more addressed in the solution structure, but implicitly determined during each move evaluation. Two meta-heuristics relying on these concepts, an iterated local search and a hybrid genetic algorithm, are presented. Extensive computational experiments demonstrate the remarkable performance of these methods on classic benchmark instances for multi-depot vehicle routing problems with and without fleet mix, as well as the notable contribution of the implicit depot choice and positioning methods to the search performance. New state-of-the-art results are obtained for multi-depot vehicle routing problems (MDVRP), and multi-depot vehicle fleet mix problems (MDVFMP) with unconstrained fleet size. The proposed concepts are fairly general, and widely applicable to many other vehicle routing variants.
Computers & Operations Research | 2015
Thibaut Vidal; Maria Battarra; Anand Subramanian; Güneş Erdoğan
The Clustered Vehicle Routing Problem (CluVRP) is a variant of the Capacitated Vehicle Routing Problem in which customers are grouped into clusters. Each cluster has to be visited once, and a vehicle entering a cluster cannot leave it until all customers have been visited. This paper presents two alternative hybrid metaheuristic algorithms for the CluVRP. The first algorithm is based on an Iterated Local Search algorithm, in which only feasible solutions are explored and problem-specific local search moves are utilized. The second algorithm is a hybrid genetic search, for which the shortest Hamiltonian path between each pair of vertices within each cluster should be precomputed. Using this information, a sequence of clusters can be used as a solution representation and large neighborhoods can be efficiently explored, by means of bi-directional dynamic programming, sequence concatenation, and appropriate data structures. Extensive computational experiments are performed on benchmark instances from the literature, as well as new large scale instances. Recommendations on the choice of algorithm are provided, based on average cluster size.