Thom Rahn
Los Alamos National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thom Rahn.
International Journal of Wildland Fire | 2015
A. Park Williams; Richard Seager; Alison K. Macalady; Max Berkelhammer; Michael A. Crimmins; Thomas W. Swetnam; Anna T. Trugman; Nikolaus H. Buenning; David Noone; Nate G. McDowell; Natalia Hryniw; Claudia I. Mora; Thom Rahn
We related measurements of annual burned area in the southwest United States during 1984-2013 to records of climate variability. Within forests, annual burned area correlated at least as strongly with spring-summer vapour pressure deficit (VPD) as with 14 other drought-related metrics, including more complex metrics that explicitly represent fuel moisture. Particularly strong correlations with VPD arise partly because this term dictates the atmospheric moisture demand. Additionally, VPD responds to moisture supply, which is difficult to measure and model regionally due to complex micrometeorology, land cover and terrain. Thus, VPD appears to be a simple and holistic indicator of regional water balance. Coupled with the well-known positive influence of prior-year cold season precipitation on fuel availability and connectivity, VPD may be utilised for burned area forecasts and also to infer future trends, though these are subject to othercomplicatingfactorssuchaslandcoverchangeandmanagement.Assuminganaggressivegreenhousegasemissions scenario, climate models predict mean spring-summer VPD will exceed the highest recorded values in the southwest in nearly40%ofyearsbythemiddleofthiscentury.Theseresultsforewarnofcontinuedincreasesinburnedforestareainthe southwest United States, and likely elsewhere, when fuels are not limiting. Additional keywords: fire danger, tree mortality, warming.
Journal of Applied Meteorology and Climatology | 2014
A. Park Williams; Richard Seager; Max Berkelhammer; Alison K. Macalady; Michael A. Crimmins; Thomas W. Swetnam; Anna T. Trugman; Nikolaus H. Buenning; Natalia Hryniw; Nate G. McDowell; David Noone; Claudia I. Mora; Thom Rahn
AbstractIn 2011, exceptionally low atmospheric moisture content combined with moderately high temperatures to produce a record-high vapor pressure deficit (VPD) in the southwestern United States (SW). These conditions combined with record-low cold-season precipitation to cause widespread drought and extreme wildfires. Although interannual VPD variability is generally dominated by temperature, high VPD in 2011 was also driven by a lack of atmospheric moisture. The May–July 2011 dewpoint in the SW was 4.5 standard deviations below the long-term mean. Lack of atmospheric moisture was promoted by already very dry soils and amplified by a strong ocean-to-continent sea level pressure gradient and upper-level convergence that drove dry northerly winds and subsidence upwind of and over the SW. Subsidence drove divergence of rapid and dry surface winds over the SW, suppressing southerly moisture imports and removing moisture from already dry soils. Model projections developed for the fifth phase of the Coupled Mod...
Proceedings of the National Academy of Sciences of the United States of America | 2014
Rodica Lindenmaier; Manvendra K. Dubey; Bradley G. Henderson; Zachary Butterfield; Jay R. Herman; Thom Rahn; SangHyun Lee
Significance Climate change and air pollution caused by fossil-energy-related CO2 and NOx emissions is a capstone societal issue. A critical barrier to an international treaty aimed toward controlling emissions is the inability to verify inventories and reduction of emissions claimed by individual nations following implementation of new technologies. We demonstrate for the first time, to our knowledge, that simultaneous remote observations of CO2, NO2, and CO regional column enhancements can be made with high fidelity and frequency. These can then be used to identify emissions from power plants and to distinguish them from other sources. Our findings represent a significant advancement in remote sensing monitoring methodology and can be used to develop an enforceable, transparent, and equitable climate treaty. There is a pressing need to verify air pollutant and greenhouse gas emissions from anthropogenic fossil energy sources to enforce current and future regulations. We demonstrate the feasibility of using simultaneous remote sensing observations of column abundances of CO2, CO, and NO2 to inform and verify emission inventories. We report, to our knowledge, the first ever simultaneous column enhancements in CO2 (3–10 ppm) and NO2 (1–3 Dobson Units), and evidence of δ13CO2 depletion in an urban region with two large coal-fired power plants with distinct scrubbing technologies that have resulted in ∆NOx/∆CO2 emission ratios that differ by a factor of two. Ground-based total atmospheric column trace gas abundances change synchronously and correlate well with simultaneous in situ point measurements during plume interceptions. Emission ratios of ∆NOx/∆CO2 and ∆SO2/∆CO2 derived from in situ atmospheric observations agree with those reported by in-stack monitors. Forward simulations using in-stack emissions agree with remote column CO2 and NO2 plume observations after fine scale adjustments. Both observed and simulated column ∆NO2/∆CO2 ratios indicate that a large fraction (70–75%) of the region is polluted. We demonstrate that the column emission ratios of ∆NO2/∆CO2 can resolve changes from day-to-day variation in sources with distinct emission factors (clean and dirty power plants, urban, and fires). We apportion these sources by using NO2, SO2, and CO as signatures. Our high-frequency remote sensing observations of CO2 and coemitted pollutants offer promise for the verification of power plant emission factors and abatement technologies from ground and space.
Journal of Physical Chemistry A | 2016
Caleb Arata; Thom Rahn; Manvendra K. Dubey
Measurements of δ(13)CH4 and CH4 concentration were made at a field site in Four Corners, New Mexico (FC), where we observed large sustained CH4 enhancements (2-8 ppm peaks for hours) during nocturnal inversions. Potential sources of this large CH4 signal at FC include (1) fugitive emissions from coal mining and gas processing that are thermogenic and isotopically (13)C enriched relative to background atmosphere and (2) emissions from agriculture, ruminants, landfills, and coalbed biogenic methane that are(13)C depleted relative to background atmosphere. We analyze our measurements of methane concentration and δ(13)C during spring and summer of 2012 to identify fugitive methane sources. We find CH4 plumes that are both enriched and depleted in (13)C relative to CH4 in background air. Keeling plots show a continuum of δ(13)C source compositions between -40‰ and -60‰ that are consistent with thermogenic and biogenic sources. The Picarro Mobile Methane Investigator (PMMI), a mobile δ(13)CH4 instrument platform, was deployed in the spring of 2013 and used to verify the isotopic enrichment of coal bed methane in the region. We combine our results with meteorological data to spatially separate these sources in the Four Corners regions. Using CO and CO2 data, along with meteorological data, we propose that the high methane concentration events ([CH4] > 3.5 ppm) are from both thermogenic and biogenic methane released from coal beds.
Scientific Reports | 2018
Lucas A. Cernusak; Nerea Ubierna; Michael W. Jenkins; Steven R. Garrity; Thom Rahn; H. H. Powers; David T. Hanson; Sanna Sevanto; Suan Chin Wong; Nate G. McDowell; Graham D. Farquhar
Stomatal conductance (gs) impacts both photosynthesis and transpiration, and is therefore fundamental to the global carbon and water cycles, food production, and ecosystem services. Mathematical models provide the primary means of analysing this important leaf gas exchange parameter. A nearly universal assumption in such models is that the vapour pressure inside leaves (ei) remains saturated under all conditions. The validity of this assumption has not been well tested, because so far ei cannot be measured directly. Here, we test this assumption using a novel technique, based on coupled measurements of leaf gas exchange and the stable isotope compositions of CO2 and water vapour passing over the leaf. We applied this technique to mature individuals of two semiarid conifer species. In both species, ei routinely dropped below saturation when leaves were exposed to moderate to high air vapour pressure deficits. Typical values of relative humidity in the intercellular air spaces were as low 0.9 in Juniperus monosperma and 0.8 in Pinus edulis. These departures of ei from saturation caused significant biases in calculations of gs and the intercellular CO2 concentration. Our results refute the longstanding assumption of saturated vapour pressure in plant leaves under all conditions.
Stable Isotopes and Biosphere Atmosphere Interactions#R##N#Processes and Biological Controls | 2005
Thom Rahn
Solar radiation reaching the Earths surface as visible and ultraviolet radiation is re-emitted as long wave (infra-red/IR) radiation that can be absorbed by gases in the atmosphere, thus trapping this energy and warming the surface. The most important of these “greenhouse” gases are water (H 2 O) and carbon dioxide (CO 2 ) but a number of other trace gases have been shown to be very effective at trapping radiation in important windows of the IR spectrum. Chief among these are the naturally occurring gases, methane (CH 4 ), ozone (O 3 ), and nitrous oxide (N 2 O), and the manmade chlorofluorocarbons (CFCs). Nitrous oxide and the CFCs also have the unique property of their stratospheric reaction products participating in the catalytic destruction of ozone. In the case of N 2 O, the increase in globally averaged radiative forcing is estimated at 0.15 W/m 2 and accounts for nearly 5% of the total forcing due to all of the recognized greenhouse gases. Because of these direct and indirect influences on Earths chemistry and radiation budget, it is imperative to understand how human-induced perturbations may affect the global budgets of N 2 O.
Journal of The Air & Waste Management Association | 2018
Caroline Allen; Christian M. Carrico; Samantha L. Gomez; Peter C. Andersen; Andrew A. Turnipseed; Craig J. Williford; John W. Birks; Dwayne Salisbury; Richard Carrion; Dan Gates; Fabian Macias; Thom Rahn; A. C. Aiken; Manvendra K. Dubey
ABSTRACT Understanding nitrogen oxides (NOx = NO + NO2) measurement techniques is important as air-quality standards become more stringent, important sources change, and instrumentation develops. NOx observations are compared in two environments: source testing from the combustion of Southwestern biomass fuels, and urban, ambient NOx. The latter occurred in the urban core of Albuquerque, NM, at an EPA NCORE site during February–March 2017, a relatively clean photochemical environment with ozone (O3) <60 ppb for all but 6 hr. We compare two techniques used to measure NOx in biomass smoke during biomass burning source testing: light absorption at 405 nm and a traditional chemiluminescence monitor. Two additional oxides of nitrogen techniques were added in urban measurements: a cavity attenuated phase shift instrument for direct NO2, and the NOy chemiluminescence instrument (conversion of NOy to NO by molybdenum catalyst). We find agreement similar to laboratory standards for NOx, NO2, and NO comparing all four instruments (R2 > 0.97, slopes between 0.95 and 1.01, intercepts < 2 ppb for 1-hr averages) in the slowly varying ambient setting. Little evidence for significant interferences in NO2 measurements was observed in comparing techniques in late-winter urban Albuquerque. This was also confirmed by negligible NOz contributions as measured with an NOy instrument. For the rapidly varying (1-min) higher NOx concentrations in biomass smoke source testing, larger variability characterized chemiluminescence and absorption instruments. Differences between the two instruments were both positive and negative and occurred for total NOx, NO, and NO2. Nonetheless, integrating the NOx signals over an entire burn experiment and comparing 95 combustion experiments, showed little evidence for large systematic influences of possible interfering species biasing the methods. For concentrations of <2 ppm, a comparison of burn integrated NOx, NO2, and NO yielded slopes of 0.94 to 0.96, R2 of 0.83 to 0.93, and intercepts of 8 to 25 ppb. We attribute the latter, at least in part, to significant noise particularly at low NOx concentrations, resulting from short averaging times during highly dynamic lab burns. Discrepancies between instruments as indicated by the intercepts urge caution with oxides of nitrogen measurements at concentrations <50 ppb for rapidly changing conditions. Implications: Multiple NOx measurement methods were employed to measure NOx concentrations at an EPA NCORE site in Albuquerque, NM, and in smoke produced by the combustion of Southwestern biomass fuels. Agreement shown during intercomparison of these NOx techniques indicated little evidence of significant interfering species biasing the methods in these two environments. Instrument agreement is important to understand for accurately characterizing ambient NOx conditions in a range of environments.
Arctic, Antarctic, and Alpine Research | 2018
Jessica M. Young-Robertson; Naama Raz-Yaseef; Lily R. Cohen; Brent D. Newman; Thom Rahn; Victoria Sloan; Cathy J. Wilson; Stan D. Wullschleger
ABSTRACT The dynamics of evapotranspiration (ET), such as the partitioning to evaporation and transpiration, of polygonal ground on the Arctic Coastal Plain are not well understood. We assessed ET dynamics, including evaporation and transpiration partitioning, created by microtopographic features associated with high- and low-centered polygons. Chamber ET and leaf-level transpiration measurements were conducted in one-week field campaigns in two growing seasons with contrasting weather conditions. We found that ET was greater in the drier and warmer sampling period (2013) compared to the colder and wetter one (2014). Evaporation dominated ET, particularly in the wetter and colder sampling period (>90% in 2014 vs. 80% in 2013). In the 2013 sampling period, wetter and warmer conditions increased ET and the contribution of transpiration to ET. If the soils warm with degrading permafrost, ET and the fraction contributed by transpiration may increase to a certain threshold, when moisture must increase with rising temperatures to further increase these fluxes. While the fraction of transpiration may rise with warmer soils, it is unlikely that transpiration will completely dominate ET. This work highlights the complexities of understanding ET in this dynamic environment and the importance of understanding differences across polygonal ground.
Environmental Earth Sciences | 2010
Lee H. Spangler; Laura M. Dobeck; Kevin S. Repasky; Amin R. Nehrir; Seth David Humphries; Jamie L. Barr; Charlie Keith; Joseph A. Shaw; Joshua H. Rouse; Alfred B. Cunningham; Sally M. Benson; Curtis M. Oldenburg; Jennifer L. Lewicki; Arthur W. Wells; J. Rodney Diehl; Brian R. Strazisar; Julianna Eileen Fessenden; Thom Rahn; James E. Amonette; Jon L. Barr; W. L. Pickles; James Jacobson; Eli A. Silver; E. J. Male; Henry W. Rauch; Kadie Gullickson; Robert C. Trautz; Yousif K. Kharaka; Jens T. Birkholzer; Lucien Wielopolski
Atmospheric Environment | 2008
Daniel Obrist; A. Gannet Hallar; Ian B. McCubbin; Britton B. Stephens; Thom Rahn