Thomas A. Cochrane
University of Canterbury
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas A. Cochrane.
Journal of Environmental Management | 2012
Mauricio E. Arias; Thomas A. Cochrane; T. Piman; Matti Kummu; Brian S. Caruso; Timothy J. Killeen
The economic value of the Tonle Sap Lake Floodplain to Cambodia is arguably among the highest provided to a nation by a single ecosystem around the world. Nonetheless, the Mekong River Basin is changing rapidly due to accelerating water infrastructure development (hydropower, irrigation, flood control, and water supply) and climate change, bringing considerable modifications to the flood pulse of the Tonle Sap Lake in the foreseeable future. This paper presents research conducted to determine how the historical flooding regime, together with human action, influenced landscape patterns of habitats in the Tonle Sap Lake, and how these habitats might shift as a result of hydrological changes. Maps of water depth, annual flood duration, and flood frequency were created for recent historical hydrological conditions and for simulated future scenarios of water infrastructure development and climate change. Relationships were then established between the historical flood maps and land cover, and these were subsequently applied to assess potential changes to habitat cover in future decades. Five habitat groups were clearly distinguishable based on flood regime, physiognomic patterns, and human activity: (1) Open water, flooded for 12 months in an average hydrological year; (2) Gallery forest, with flood duration of 9 months annually; (3) Seasonally flooded habitats, flooded 5-8 months and dominated by shrublands and grasslands; (4) transitional habitats, flooded 1-5 months and dominated by abandoned agricultural fields, receding rice/floating rice, and lowland grasslands; and (5) Rainfed habitats, flooded up to 1 month and consisting mainly of wet season rice fields and village crops. It was found that water infrastructure development could increase the area of open water (+18 to +21%) and the area of rainfed habitats (+10 to +14%), while reducing the area covered with seasonally flooded habitats (-13 to -22%) and gallery forest (-75 to -83%). Habitat cover shifts as a result of climate change include a net increase of open water (2-21%), as well as a reduction of rainfed habitats by 2-5% and seasonally flooded habitats by 5-11%. Findings from this study will help guide on-going and future conservation and restoration efforts throughout this unique and critical ecosystem.
Transactions of the ASABE | 1997
Thomas A. Cochrane; Dennis C. Flanagan
The effects of water and sediment inflow to the top of a 25 cm wide rill with a fine sand bed at 5% slope with no rainfall and no infiltration were determined by using a new laboratory apparatus called a rill simulator. A significant sediment feedback effect on the detachment by flow at the top of the flume was determined with data obtained from laser elevation scans. Observations of the detachment that occurred in the rill were thus comparable with those predicted by the detachment equation in the WEPP model (Foster et al., 1995). For low sediment inflow rates, the detachment equation could be adjusted to predict reasonable results of detachment in the rill, but parameter estimation (rill erodibility, critical shear stress, transport capacity) was difficult.
Journal of Environmental Management | 2012
D. Wicke; Thomas A. Cochrane; Aisling D. O'Sullivan
A method using thin boards (3 cm thick, 0.56 m(2)) comprising different paving materials typically used in urban environments (2 asphalt types and concrete) was employed to specifically investigate air-borne deposition dynamics of TSS, zinc, copper and lead. Boards were exposed at an urban car park near vehicular traffic to determine the rate of contaminant build-up over a 13-day dry period. Concentration profiles from simulated rainfall wash-off were used to determine contaminant yields at different antecedent dry days. Maximum contaminant yields after 13 days of exposure were 2.7 kg ha(-1) for TSS, 35 g ha(-1) zinc, 2.3 g ha(-1) copper and 0.4 g ha(-1) lead. Accumulation of all contaminants increased over the first week and levelled off thereafter, supporting theoretical assumptions that contaminant accumulation on impervious surfaces asymptotically approaches a maximum. Comparison of different surface types showed approximately four times higher zinc concentrations in runoff from asphalt surfaces and two times higher TSS concentrations in runoff from concrete, which is attributed to different physical and chemical compositions of the pavement types. Contaminant build-up and wash-off behaviours were modelled using exponential and saturation functions commonly applied in the US EPAs Stormwater Management Model (SWMM) showing good correlation between measured and modelled concentrations. Maximum build-up, half-saturation time, build-up rate constants and wash-off coefficients, necessary for stormwater contaminant modelling, were determined for the four contaminants studied. These parameters are required to model contaminant concentrations in urban runoff assisting in stormwater management decisions.
AMBIO: A Journal of the Human Environment | 2013
Mauricio E. Arias; Thomas A. Cochrane; David A. Norton; Timothy J. Killeen; Puthea Khon
The Tonle Sap is the largest wetland in Southeast Asia and one of the world’s most productive inland fisheries. The Mekong River inundates the Tonle Sap every year, shaping a mosaic of natural and agricultural habitats. Ongoing hydropower development, however, will dampen the flood pulse that maintains the Tonle Sap. This study established the current underlying relationship among hydrology, vegetation, and human use. We found that vegetation is strongly influenced by flood duration; however, this relationship was heavily distorted by fire, grazing, and rice cultivation. The expected flood pulse alteration will result in higher water levels during the dry season, permanently inundating existing forests. The reduction of the maximum flood extent will facilitate agricultural expansion into natural habitats. This study is the most comprehensive field survey of the Tonle Sap to date, and it provides fundamental knowledge needed to understand the underlying processes that maintain this important wetland.
Transactions of the ASABE | 2003
Thomas A. Cochrane; Dennis C. Flanagan
In watershed modeling with WEPP, the process of manually identifying hillslopes and channels is very time consuming and can be subject to large variation between users. Furthermore, the representation of hillslope profiles is subjective and can differ between different modelers. To overcome this, modeling procedures called the Hillslope methods were developed that use geographical information systems (GIS) and digital elevation models (DEMs) to assess water erosion in small watersheds with the Water Erosion Prediction Project (WEPP) model. The Hillslope methods are automated procedures to develop hillslope and channel topographic characteristics from DEMs for use in the WEPP model. The objective of this study was therefore to determine which method of creating representative slope profile and representative hillslope profile lengths performs best. Three methods of creating a representative slope profile from DEMs were developed and tested: linear average, exponentially transformed average, and weighted average. Additionally, two methods to determine the representative hillslope profile length, called the Calcleng and Chanleng methods, were evaluated. The Calcleng method calculates a representative length of hillslope based on the weighted lengths of all flowpaths in a hillslope as identified through a DEM. The Chanleng method sets hillslope width equal to adjacent channel length and then computes a hillslope length from hillslope area divided by width. Actual DEMs from six research watersheds were used to test these methods. The results from the application of these methods were compared to each other and to measured sediment data. Results showed that the three methods for determining the representative slopes of the profiles were not significantly different from each other. There were also no significant differences between the Calcleng and the Chanleng methods for sediment yields and runoff from the six watersheds. Theoretically, however, for more complex watersheds, the weighted average method for determination of representative slope profile gradient values and the Chanleng method to determine representative profile slope lengths are the preferred methods. These results help automate the application of WEPP to watersheds using GIS and DEMs.
Transactions of the ASABE | 2013
Dennis C. Flanagan; James R Frankenberger; Thomas A. Cochrane; Chris S. Renschler; William J. Elliot
Abstract. At the hillslope profile and/or field scale, a simple Windows graphical user interface (GUI) is available to easily specify the slope, soil, and management inputs for application of the USDA Water Erosion Prediction Project (WEPP) model. Likewise, basic small watershed configurations of a few hillslopes and channels can be created and simulated with this GUI. However, as the catchment size increases, the complexity of developing and organizing all WEPP model inputs greatly increases due to the multitude of potential variations in topography, soils, and land management practices. For these types of situations, numerical approaches and special user interfaces have been developed to allow for easier WEPP model setup, utilizing either publicly available or user-specific geospatial information, e.g., digital elevation models (DEMs), geographic information system (GIS) soil data layers, and GIS land use/land cover data layers. We utilize the Topographic Parameterization (TOPAZ) digital landscape analysis tool for channel, watershed, and subcatchment delineation and to derive slope inputs for each of the subcatchment hillslope profiles and channels. A user has the option of specifying a single soil and land management for each subcatchment or utilizing the information in soils and land use/land cover GIS data layers to automatically assign those values for each grid cell. Once WEPP model runs are completed, the output data are analyzed, results interpreted, and maps of spatial soil loss and sediment yields are generated and visualized in a GIS. These procedures have been used within a number of GIS platforms including GeoWEPP, an ArcView/ArcGIS extension that was the first geospatial interface to be developed in 2001. GeoWEPP allows experienced GIS users the ability to import and utilize their own detailed DEM, soil, and/or land use/land cover information or to access publicly available spatial datasets. A web-based GIS system that used MapServer web GIS software for handling and displaying the spatial data and model results was initially released in 2004. Most recently, Google Maps and OpenLayers technologies have been integrated into the web WEPP GIS software to provide significant enhancements. This article discusses in detail the logic and procedures for developing the WEPP model inputs, the various WEPP GIS interfaces, and provides example real-world geospatial WEPP applications. Further work is ongoing in order to expand these tools to allow users to customize their own inputs via the internet and to link the desktop GeoWEPP with the web-based GIS system.
Environmental Conservation | 2011
Mauricio E. Arias; Thomas A. Cochrane; Keith S. Lawrence; Timothy J. Killeen; Tracy Farrell
SUMMARY The operation and longevity of hydropower dams are often negatively impacted by sedimentation. Forest conservation can reduce soil erosion, and therefore efforts to maintain upstream forest cover within a watershed contribute to the economic life span of a hydropower facility. The cost of forest conservation can be viewed as an investment in hydropower and be financed via a payment for ecosystem services (PES) scheme. A novel modelling framework is used toestimatepaymentsforforestconservationconsisting of:(1)land-usechangeprojection;(2)watershederosion modelling; (3) reservoir sedimentation estimation; (4) power generation loss calculation; and (5) PES scheme design. The framework was applied to a proposed dam in Cambodia (Pursat 1). The estimated net present value of forest conservation was US
Landscape Ecology | 2015
Rebecca E. Campbell; Michael J. Winterbourn; Thomas A. Cochrane; Angus R. McIntosh
4.7 million when using average annual climate values over 100 years, or US
Science of The Total Environment | 2016
Frances J. Charters; Thomas A. Cochrane; Aisling D. O'Sullivan
6.4 million when considering droughts every eight years. This can be remunerated with annual payments ofUS
Transactions of the ASABE | 2005
Thomas A. Cochrane; Dennis C. Flanagan
4.26ha −1 orUS