Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas D. Grant is active.

Publication


Featured researches published by Thomas D. Grant.


Science | 2014

Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein

Jason Tenboer; Shibom Basu; Nadia A. Zatsepin; Kanupriya Pande; Despina Milathianaki; Matthias Frank; Mark S. Hunter; Sébastien Boutet; Garth J. Williams; Jason E. Koglin; Dominik Oberthuer; Michael Heymann; Christopher Kupitz; Chelsie E. Conrad; Jesse Coe; Shatabdi Roy-Chowdhury; Uwe Weierstall; Daniel James; Dingjie Wang; Thomas D. Grant; Anton Barty; Oleksandr Yefanov; Jennifer Scales; Cornelius Gati; Carolin Seuring; Vukica Šrajer; Robert Henning; Peter Schwander; Raimund Fromme; A. Ourmazd

Serial femtosecond crystallography using ultrashort pulses from x-ray free electron lasers (XFELs) enables studies of the light-triggered dynamics of biomolecules. We used microcrystals of photoactive yellow protein (a bacterial blue light photoreceptor) as a model system and obtained high-resolution, time-resolved difference electron density maps of excellent quality with strong features; these allowed the determination of structures of reaction intermediates to a resolution of 1.6 angstroms. Our results open the way to the study of reversible and nonreversible biological reactions on time scales as short as femtoseconds under conditions that maximize the extent of reaction initiation throughout the crystal. Structural changes during a macromolecular reaction are captured at near-atomic resolution by an x-ray free electron laser. Watching a protein molecule in motion X-ray crystallography has yielded beautiful high-resolution images that give insight into how proteins function. However, these represent static snapshots of what are often dynamic processes. For photosensitive molecules, time-resolved crystallography at a traditional synchrotron source provides a method to follow structural changes with a time resolution of about 100 ps. X-ray free electron lasers (XFELs) open the possibility of performing time-resolved experiments on time scales as short as femtoseconds. Tenboer et al. used XFELs to study the light-triggered dynamics of photoactive yellow protein. Electron density maps of high quality were obtained 10 ns and 1 µs after initiating the reaction. At 1 µs, two intermediates revealed previously unidentified structural changes. Science, this issue p. 1242


Science | 2016

Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein.

Kanupriya Pande; C. Hutchison; Gerrit Groenhof; Andy Aquila; Josef S. Robinson; Jason Tenboer; Shibom Basu; Sébastien Boutet; Daniel P. DePonte; Mengning Liang; Thomas A. White; Nadia A. Zatsepin; Oleksandr Yefanov; Dmitry Morozov; Dominik Oberthuer; Cornelius Gati; Ganesh Subramanian; Daniel James; Yun Zhao; J. D. Koralek; Jennifer Brayshaw; Christopher Kupitz; Chelsie E. Conrad; Shatabdi Roy-Chowdhury; Jesse Coe; Markus Metz; Paulraj Lourdu Xavier; Thomas D. Grant; Jason E. Koglin; Gihan Ketawala

Visualizing a response to light Many biological processes depend on detecting and responding to light. The response is often mediated by a structural change in a protein that begins when absorption of a photon causes isomerization of a chromophore bound to the protein. Pande et al. used x-ray pulses emitted by a free electron laser source to conduct time-resolved serial femtosecond crystallography in the time range of 100 fs to 3 ms. This allowed for the real-time tracking of the trans-cis isomerization of the chromophore in photoactive yellow protein and the associated structural changes in the protein. Science, this issue p. 725 The trans-to-cis isomerization of a key chromophore is characterized on ultrafast time scales. A variety of organisms have evolved mechanisms to detect and respond to light, in which the response is mediated by protein structural changes after photon absorption. The initial step is often the photoisomerization of a conjugated chromophore. Isomerization occurs on ultrafast time scales and is substantially influenced by the chromophore environment. Here we identify structural changes associated with the earliest steps in the trans-to-cis isomerization of the chromophore in photoactive yellow protein. Femtosecond hard x-ray pulses emitted by the Linac Coherent Light Source were used to conduct time-resolved serial femtosecond crystallography on photoactive yellow protein microcrystals over a time range from 100 femtoseconds to 3 picoseconds to determine the structural dynamics of the photoisomerization reaction.


Nature | 2017

Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography.

Jason R. Stagno; Yongmei Liu; Y. R. Bhandari; Chelsie E. Conrad; S. Panja; M. Swain; L. Fan; Garrett Nelson; Chufeng Li; D. R. Wendel; Thomas A. White; Jesse Coe; Max O. Wiedorn; Juraj Knoška; Dominik Oberthuer; R. A. Tuckey; P. Yu; M. Dyba; Sergey G. Tarasov; Uwe Weierstall; Thomas D. Grant; Charles D. Schwieters; Junmei Zhang; Adrian R. Ferré-D'Amaré; Petra Fromme; D. E. Draper; Mengning Liang; Mark S. Hunter; Sébastien Boutet; K. Tan

Riboswitches are structural RNA elements that are generally located in the 5′ untranslated region of messenger RNA. During regulation of gene expression, ligand binding to the aptamer domain of a riboswitch triggers a signal to the downstream expression platform. A complete understanding of the structural basis of this mechanism requires the ability to study structural changes over time. Here we use femtosecond X-ray free electron laser (XFEL) pulses to obtain structural measurements from crystals so small that diffusion of a ligand can be timed to initiate a reaction before diffraction. We demonstrate this approach by determining four structures of the adenine riboswitch aptamer domain during the course of a reaction, involving two unbound apo structures, one ligand-bound intermediate, and the final ligand-bound conformation. These structures support a reaction mechanism model with at least four states and illustrate the structural basis of signal transmission. The three-way junction and the P1 switch helix of the two apo conformers are notably different from those in the ligand-bound conformation. Our time-resolved crystallographic measurements with a 10-second delay captured the structure of an intermediate with changes in the binding pocket that accommodate the ligand. With at least a 10-minute delay, the RNA molecules were fully converted to the ligand-bound state, in which the substantial conformational changes resulted in conversion of the space group. Such notable changes in crystallo highlight the important opportunities that micro- and nanocrystals may offer in these and similar time-resolved diffraction studies. Together, these results demonstrate the potential of ‘mix-and-inject’ time-resolved serial crystallography to study biochemically important interactions between biomacromolecules and ligands, including those that involve large conformational changes.


Biopolymers | 2011

Small Angle X-ray Scattering as a Complementary Tool for High- throughput Structural Studies

Thomas D. Grant; Joseph R. Luft; Jennifer R. Wolfley; Hiro Tsuruta; Anne Martel; Gaetano T. Montelione; Edward H. Snell

Structural crystallography and nuclear magnetic resonance (NMR) spectroscopy are the predominant techniques for understanding the biological world on a molecular level. Crystallography is constrained by the ability to form a crystal that diffracts well and NMR is constrained to smaller proteins. Although powerful techniques, they leave many soluble, purified structurally uncharacterized protein samples. Small angle X-ray scattering (SAXS) is a solution technique that provides data on the size and multiple conformations of a sample, and can be used to reconstruct a low-resolution molecular envelope of a macromolecule. In this study, SAXS has been used in a high-throughput manner on a subset of 28 proteins, where structural information is available from crystallographic and/or NMR techniques. These crystallographic and NMR structures were used to validate the accuracy of molecular envelopes reconstructed from SAXS data on a statistical level, to compare and highlight complementary structural information that SAXS provides, and to leverage biological information derived by crystallographers and spectroscopists from their structures. All the ab initio molecular envelopes calculated from the SAXS data agree well with the available structural information. SAXS is a powerful albeit low-resolution technique that can provide additional structural information in a high-throughput and complementary manner to improve the functional interpretation of high-resolution structures.


Nature | 2017

Structure of the full-length glucagon class B G-protein-coupled receptor.

Haonan Zhang; Anna Qiao; Dehua Yang; Linlin Yang; Antao Dai; Chris de Graaf; Steffen Reedtz-Runge; Venkatasubramanian Dharmarajan; Hui Zhang; Gye Won Han; Thomas D. Grant; Raymond G. Sierra; Uwe Weierstall; Garrett Nelson; Wei Liu; Yanhong Wu; Limin Ma; Xiaoqing Cai; Guangyao Lin; Xiaoai Wu; Zhi Geng; Yuhui Dong; Gaojie Song; Patrick R. Griffin; Jesper Lau; Vadim Cherezov; Huaiyu Yang; Michael A. Hanson; Raymond C. Stevens; Qiang Zhao

The human glucagon receptor, GCGR, belongs to the class B G-protein-coupled receptor family and plays a key role in glucose homeostasis and the pathophysiology of type 2 diabetes. Here we report the 3.0 Å crystal structure of full-length GCGR containing both the extracellular domain and transmembrane domain in an inactive conformation. The two domains are connected by a 12-residue segment termed the stalk, which adopts a β-strand conformation, instead of forming an α-helix as observed in the previously solved structure of the GCGR transmembrane domain. The first extracellular loop exhibits a β-hairpin conformation and interacts with the stalk to form a compact β-sheet structure. Hydrogen–deuterium exchange, disulfide crosslinking and molecular dynamics studies suggest that the stalk and the first extracellular loop have critical roles in modulating peptide ligand binding and receptor activation. These insights into the full-length GCGR structure deepen our understanding of the signalling mechanisms of class B G-protein-coupled receptors.


Proteins | 2015

A hybrid NMR/SAXS-based approach for discriminating oligomeric protein interfaces using Rosetta

Paolo Rossi; Lei Shi; Gaohua Liu; Christopher M. Barbieri; Hsiau Wei Lee; Thomas D. Grant; Joseph R. Luft; Rong Xiao; Thomas B. Acton; Edward H. Snell; Gaetano T. Montelione; David Baker; Oliver F. Lange; Nikolaos G. Sgourakis

Oligomeric proteins are important targets for structure determination in solution. While in most cases the fold of individual subunits can be determined experimentally, or predicted by homology‐based methods, protein–protein interfaces are challenging to determine de novo using conventional NMR structure determination protocols. Here we focus on a member of the bet‐V1 superfamily, Aha1 from Colwellia psychrerythraea. This family displays a broad range of crystallographic interfaces none of which can be reconciled with the NMR and SAXS data collected for Aha1. Unlike conventional methods relying on a dense network of experimental restraints, the sparse data are used to limit conformational search during optimization of a physically realistic energy function. This work highlights a new approach for studying minor conformational changes due to structural plasticity within a single dimeric interface in solution. Proteins 2015; 83:309–317.


Structural Dynamics | 2017

Structural enzymology using X-ray free electron lasers

Christopher Kupitz; Jose L. Olmos; Mark R. Holl; Lee Tremblay; Kanupriya Pande; Suraj Pandey; Dominik Oberthür; Mark S. Hunter; Mengning Liang; Andrew Aquila; Jason Tenboer; George Calvey; Andrea M. Katz; Yujie Chen; Max O. Wiedorn; Juraj Knoška; Alke Meents; Valerio Majriani; Tyler Norwood; Ishwor Poudyal; Thomas D. Grant; Mitchell D. Miller; Weijun Xu; Aleksandra Tolstikova; Andrew J. Morgan; Markus Metz; Jose M. Martin-Garcia; James Zook; Shatabdi Roy-Chowdhury; Jesse Coe

Mix-and-inject serial crystallography (MISC) is a technique designed to image enzyme catalyzed reactions in which small protein crystals are mixed with a substrate just prior to being probed by an X-ray pulse. This approach offers several advantages over flow cell studies. It provides (i) room temperature structures at near atomic resolution, (ii) time resolution ranging from microseconds to seconds, and (iii) convenient reaction initiation. It outruns radiation damage by using femtosecond X-ray pulses allowing damage and chemistry to be separated. Here, we demonstrate that MISC is feasible at an X-ray free electron laser by studying the reaction of M. tuberculosis ß-lactamase microcrystals with ceftriaxone antibiotic solution. Electron density maps of the apo-ß-lactamase and of the ceftriaxone bound form were obtained at 2.8 Å and 2.4 Å resolution, respectively. These results pave the way to study cyclic and non-cyclic reactions and represent a new field of time-resolved structural dynamics for numerous substrate-triggered biological reactions.


Nucleic Acids Research | 2012

Structural conservation of an ancient tRNA sensor in eukaryotic glutaminyl-tRNA synthetase

Thomas D. Grant; Edward H. Snell; Joseph R. Luft; Erin Quartley; Stephanie Corretore; Jennifer R. Wolfley; M. Elizabeth Snell; Andrew Hadd; John J. Perona; Eric M. Phizicky; Elizabeth J. Grayhack

In all organisms, aminoacyl tRNA synthetases covalently attach amino acids to their cognate tRNAs. Many eukaryotic tRNA synthetases have acquired appended domains, whose origin, structure and function are poorly understood. The N-terminal appended domain (NTD) of glutaminyl-tRNA synthetase (GlnRS) is intriguing since GlnRS is primarily a eukaryotic enzyme, whereas in other kingdoms Gln-tRNAGln is primarily synthesized by first forming Glu-tRNAGln, followed by conversion to Gln-tRNAGln by a tRNA-dependent amidotransferase. We report a functional and structural analysis of the NTD of Saccharomyces cerevisiae GlnRS, Gln4. Yeast mutants lacking the NTD exhibit growth defects, and Gln4 lacking the NTD has reduced complementarity for tRNAGln and glutamine. The 187-amino acid Gln4 NTD, crystallized and solved at 2.3 Å resolution, consists of two subdomains, each exhibiting an extraordinary structural resemblance to adjacent tRNA specificity-determining domains in the GatB subunit of the GatCAB amidotransferase, which forms Gln-tRNAGln. These subdomains are connected by an apparent hinge comprised of conserved residues. Mutation of these amino acids produces Gln4 variants with reduced affinity for tRNAGln, consistent with a hinge-closing mechanism proposed for GatB recognition of tRNA. Our results suggest a possible origin and function of the NTD that would link the phylogenetically diverse mechanisms of Gln-tRNAGln synthesis.


Acta Crystallographica Section D-biological Crystallography | 2015

The accurate assessment of small-angle X-ray scattering data

Thomas D. Grant; Joseph R. Luft; Lester G. Carter; Tsutomu Matsui; Thomas M. Weiss; Anne Martel; Edward H. Snell

A set of quantitative techniques is suggested for assessing SAXS data quality. These are applied in the form of a script, SAXStats, to a test set of 27 proteins, showing that these techniques are more sensitive than manual assessment of data quality.


PLOS ONE | 2014

Comparing Chemistry to Outcome: The Development of a Chemical Distance Metric, Coupled with Clustering and Hierarchal Visualization Applied to Macromolecular Crystallography

Andrew E. Bruno; Amanda Ruby; Joseph R. Luft; Thomas D. Grant; Jayaraman Seetharaman; Gaetano T. Montelione; John F. Hunt; Edward H. Snell

Many bioscience fields employ high-throughput methods to screen multiple biochemical conditions. The analysis of these becomes tedious without a degree of automation. Crystallization, a rate limiting step in biological X-ray crystallography, is one of these fields. Screening of multiple potential crystallization conditions (cocktails) is the most effective method of probing a proteins phase diagram and guiding crystallization but the interpretation of results can be time-consuming. To aid this empirical approach a cocktail distance coefficient was developed to quantitatively compare macromolecule crystallization conditions and outcome. These coefficients were evaluated against an existing similarity metric developed for crystallization, the C6 metric, using both virtual crystallization screens and by comparison of two related 1,536-cocktail high-throughput crystallization screens. Hierarchical clustering was employed to visualize one of these screens and the crystallization results from an exopolyphosphatase-related protein from Bacteroides fragilis, (BfR192) overlaid on this clustering. This demonstrated a strong correlation between certain chemically related clusters and crystal lead conditions. While this analysis was not used to guide the initial crystallization optimization, it led to the re-evaluation of unexplained peaks in the electron density map of the protein and to the insertion and correct placement of sodium, potassium and phosphate atoms in the structure. With these in place, the resulting structure of the putative active site demonstrated features consistent with active sites of other phosphatases which are involved in binding the phosphoryl moieties of nucleotide triphosphates. The new distance coefficient, CDcoeff, appears to be robust in this application, and coupled with hierarchical clustering and the overlay of crystallization outcome, reveals information of biological relevance. While tested with a single example the potential applications related to crystallography appear promising and the distance coefficient, clustering, and hierarchal visualization of results undoubtedly have applications in wider fields.

Collaboration


Dive into the Thomas D. Grant's collaboration.

Top Co-Authors

Avatar

Edward H. Snell

Hauptman-Woodward Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Joseph R. Luft

Hauptman-Woodward Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jesse Coe

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mengning Liang

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Garrett Nelson

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uwe Weierstall

Arizona State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge